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Overview

• Lecture 1: entanglement, frustration and quantum spin systems

• Lecture 2: from real-space renormalization group methods to 
variational wavefunctions

• Lecture 3: quantum computing with and computational complexity of 
simulating quantum many-body systems
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Connecting entanglement theory with strongly 
correlated quantum systems

• Strongly correlated quantum systems are at forefront of current experimental 
research

– Cfr. Realization of Mott insulator versus superfluid phase transition in optical 
lattices (Bloch et al.)

– Building of universal quantum simulators using e.g. ion traps
– No good theoretical understanding yet: main bottleneck is simulation of quantum 

Hamiltonians 

• Quantum spin systems form perfect playground for investigating strongly correlated 
quantum systems:

– Heisenberg model was put forward by Dirac and Heisenberg already in the ’20s 
as candidate Hamiltonian describing magnetism

– Fermi-Hubbard model is believed to be minimal model exhibiting features of high 
Tc superconductivity (reduces to Heisenberg in some limit)

– However, still many open questions!

• Quantum spin models arise naturally in the study of quantum error correcting codes
– Q.E.C led Kitaev to introducing quantum spin model exhibiting new exotic 

phases of matter (topological quantum order)
– Intriguing connection between ideas in quantum information and condensed 

matter (e.g. cluster states and valence bond states, …)



• What are the questions we would like to see answered?
– Ground state properties, energy spectrum, correlation length, criticality, connection 

between those and entanglement
– Are such systems useful, i.e. do they exhibit the right kind of entanglement and allow for 

the right kind of control, for building e.g. quantum repeaters, quantum memory or 
quantum computers?

– Finite-T: what kind of quantum properties survive at finite T?
– Connection between amount of entanglement present in system and simulatability on a 

classical computer?
– Computational complexity of finding ground states?
– Dynamics: how much entanglement can be created by local Hamiltonian evolution?

• We already have partial answers to those questions:
– connection between spectrum and correlation length
– criticality in 1-D is accompanied by diverging block entropy. 

Not such a signature in 2-D (PEPS)
– Entanglement length in spin systems versus quantum repeaters
– Cluster state quantum computation of Raussendorf and Briegel (cfr. PEPS)
– Kitaev: using Toric Code states as fault-tolerant quantum memory in 4-D
– Finite T: strict area law for mutual information
– MPS/PEPS parameterize manifold of ground states of local Hamiltonians
– Kitaev: finding ground states of disordered local Hamiltonians is QMA-complete (also: 

famous N-representability problem)
– Dynamics: Lieb-Robinson bounds



Entanglement

Complementary viewpoints on entanglement:
• Quantum information theory: it is a resource that allows for revolutionary 

information theoretic tasks
• Quantum many-body physics: entanglement gives rise to exotic phases of 

matter
• Numerical simulation of strongly correlated quantum systems: enemy nr. 1!

Of course these viewpoints are mutually compatible:
- Complexity of simulation vs. power of quantum computation
- Topological quantum order vs. quantum error correction

Key question: what kind of superpositions appear in nature?



Many-body Hilbert space is a convenient illusion

• Size of Hilbert space of system of N particles / modes / … scales exponentially with 
N. 

– What is the fraction of states that are physical, i.e. can be created as low-energy 
states of local Hamiltonians or by a quantum computer in poly time?  
Exponentially small !!!

– Ground states (and low-energy states …) have very special properties 

• Amount of entanglement is very small: can be formalized using so-called 
area laws

• Ground states have extremal local correlations: all (quasi-)long range 
correlations are a consequence of the fact that those local correlations must 
be made compatible with translational invariance 

– If we want to simulate a many-body system, we should be smarter

  

d
d NN logcN

ND   vs



• Can we identify the corner in Hilbert space that corresponds to ground 
states of local many-body quantum Hamiltonians?

– If so: this would lead to a systematic way of coming up with variational
ansatze

• Cfr. some of the biggest breakthroughs in condensed matter physics 
involved guessing the right wave function (BCS, Laughlin, …) 

– What is the structure of entanglement in those systems?



Strongly correlated many-body quantum systems

• Electrons in deep potential wells give rise to an effective Hubbard model

• Big open question: phase diagram of 2-D Hubbard model as a function of 
the filling factor and of the on-site interaction 

• Quantum spin systems: limit of strong onsite U at half-filling: Heisenberg 
model
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Quantum spin systems
• Provide perfect playground for investigating nature of entanglement 

in strongly correlated quantum systems
– Most pronounced quantum effects arise at low temperature as 

large quantum fluctuations exist (ground states)
– We assume some geometry and local interactions (cfr. Causality) 

such as Heisenberg model

• Ground states of local spin Hamiltonians are very special: 

– Translational invariance implies that energy is completely determined by 
n.n. reduced density operator ρ of 2 spins:

– Finding ground state energy is equivalent to maximizing E over all possible 
ρ arising from states with the right symmetry  (Quantum Marginal Problem)

– The extreme points of the convex set {ρ} therefore correspond to ground 
states: ground states are completely determined by their reduced density 
operators!
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Translational invariant spin chains
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Symmetries enforce that the RDM of n.n. for the ground state is of the form:

Positivity conditions:

If we know the energy as a function of Delta, then we know the shape of the convex set for 
the translational invariant case:
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• Difficulty in characterizing this convex set is due to monogamy / 
frustration properties of entanglement: a singlet cannot be shared !

– The higher the dimension, the smaller the entanglement :

– In infinite dimensions: only separable states are compatible with 
the permutation symmetry; mean field theory becomes exact (cfr. 
De Finetti: Werner ‘88)
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Entanglement: basics

• Given a state of 2 spin ½’s (qubits):

• Is this state a product state (separable)?  
– i.e.: can we write this state as a product 

– Schmidt decomposition / singular value decomposition

• Separable iff second Schmidt coefficient is zero; entangled 
otherwise
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Entanglement in a system of 2 qubits

• How to quantify entanglement?

• Entropy of entanglement: entropy of probability distribution obtained by squaring the 
Schmidt coefficients

– This is equivalent to the von-Neumann entropy of the reduced density operator 
– Has a very clear operational meaning: cfr. Talks of Kempe

• To check seperability: calculate rank of matrix A
– Concurrence: C=2*det(A)
– 1 to 1 relation between concurrence and entanglement entropy

 

  




























1
1

2
1a   ;    

11
11

2
1A       11011000

2
1

10
01

2
1A                           1100

2
1

aa


i

iiii ppSp 2
2 log          ;         



Entanglement
• What about mixed states?

– Entanglement of distillation: how useful is a state for doing 
quantum information processing?

• Basic idea: given many copies, how can I extract perfect singlets by 
doing local operations assisted by classical communication (LOCC)

• Drawback: we still don’t know how to calculate this

– Entanglement of formation: how many perfect singlets do I need 
to construct a mixed state starting from singlets and LOCC

• Is zero (separable) iff a state can be written as a convex sum of 
product states:

• In case of 2 qubits: can be exactly calculated in form of concurrence 
(Wootters ’98)
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• Difficulty in characterizing this convex set is due to monogamy / 
frustration properties of entanglement: a singlet cannot be shared !

– The higher the dimension, the smaller the entanglement :

– In infinite dimensions: only separable states are compatible with 
the permutation symmetry; mean field theory becomes exact (cfr. 
De Finetti: Werner ‘88)
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Gaussian states: calculation of maximal entanglement of formation of 
n.n. density matrices arising from a states with a given symmetry can 

be done exactly: extremal cases are ground states of quadratic 
Hamiltonians

Finite size corrections: Ring of N 
particlesM. Wolf, FV, I. CiracPhys. Rev. Lett. 92, 087903 (2004)



Monogamy relations for states without symmetry constraints:     
Coffman-Kundu-Wootters inequality
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• Given a N-qubit (spin ½) state, the sum of the concurrences (entanglement 
measure depending on 2-particle RDM) of one particle with all the rest is 
bounded by 1 minus its magnetization:

– Is a nontrivial condition on the elements of the 2-particle reduced 
density operator   -> what about analogue for fermions?



Monogamy of Bell correlations

• Monogamy of CHSH-Bell correlations is key ingredient of quantum cryptography

Classical
quantum

No-Signalling

2-2

2

-2

4

-4

-4 4

     


 212211,max BBABBAIBAI ii
 

8  :    

2     and    2   :    
22




AC
CHSH

AB
CHSH

AC
CHSH

AB
CHSH

quantum

classical





What makes ground states special?

• As we have seen yesterday: they have extremal local correlations 
compatible with some symmetry (e.g. translational invariance)

• We do not want to parameterize them with exponentially many 
parameters (size of Hilbert space)

• How to proceed?

• Are there other properties that make ground states etc. special?

– Area laws
– Decay of correlations



Entanglement, correlations, area laws
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Quantifying the amount of correlations between A and B: mutual information

All thermal states exhibit an exact area law (as contrasted to volume law)

This is very ungeneric: entanglement is localized around the boundary

This knowledge is being exploited to come up with variational classes of states and associated 
simulation methods that capture the physics needed for describing such systems:

* Matrix Product States, Projected Entangled Pair States, MERA 

Similar results for ground states (critical systems might get logarithmic corrections)

Cirac, Hastings, FV, Wolf



Area laws
• Main picture: in case of ground states, entanglement is concentrated arou

the boundary

• Rigorous proof for area law for any 1-D gapped spin system ! Hastings ‘0
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Ground states of spin Systems
• Ground states of gapped local Hamiltonians have a finite correlation length:

• Let’s analyze this statement from the point of view of quantum information theory, 
assuming that 

– There is a separable purification of ρAB , so there exists a unitary in region C that 
disentangles the two parts

– Blocking the spins in blocks of log(ξC) spins, then we can write the state as:

– Doing this recursively yields a matrix product state:
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Matrix Product States / Valence Bond States

• Translational invariant by construction
• Extremal local correlations
• Original motivation: quantum repeater (exploiting topological 

features)

Singlet: 
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Matrix Product States (MPS)

• Generalizations of AKLT-states (Finitely correlated states, Fannes, Nachtergaele, Werner  ‘92)
• Gives a LOCAL description of a multipartite state
• Translational invariant by construction
• Guaranteed to be ground states of gapped local quantum Hamiltonians
• The  number of parameters scales linearly in N (# spins)
• The set of all MPS is complete: Every state can be represented as a MPS as long as D is taken large 

enough 
• The point is: if we consider the set of MPS with fixed D, their reduced density operators already 

approximate the ones obtained by all translational invariant ones very well (and hence also all 
possible ground states)

• MPS have bounded Schmidt rank D
• Correlations can be calculated efficiently: contraction of D2x D2 matrices
• Numerical renormalization group method of Wilson and Density matrix renormalization group method 

of S. White can be reformulated and improved upon as variational methods within class of MPS
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Convex set of reduced density operators of 
ground states of XXZ-chains approximated with 

MPS of D=1,2



Matrix Product States

• If an area law applies, then a state can efficiently be parameterized by a so-
called matrix product state (MPS) / valence bond state / finitely correlated 
state

– MPS: most general state in 1-D that obeys a strict area law by 
construction: rank of reduced density operators is cst (D2)

– We want to bound the cost of approximating state that obeys area law 
with a MPS for given precision as a function of number of spins:

• Breaking of exponential wall: polynomial vs. exponential complexity

• Complete identification of manifold of ground states of gapped quantum 
spin systems

– DMRG, MPS-based algorithms: variational methods within this class of 
states!
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Wilson’s numerical renormalization group
• Consider Kondo-impurity-like problem with Hamiltonian

• NRG method creates an effective Hamiltonian which is the original 
Hamiltonian projected in a basis of matrix product states (MPS)

• Success of NRG follows from the fact that those MPS parameterize well the 
low-energy sector of the Hilbert space

• Main new ingredient from DMRG: sweep!
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S. White’s DMRG method

• Extending DMRG to periodic boundary conditions:
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Variational dimensional reduction of MPS

• Given a D-dimensional           MPS parameterized by the DxD matrices Ai, find            
parameterized by D’xD’matrices Bi  (D’< D)  such as to minimize 

– Can be minimized variationally by iteratively solving linear systems of equations

• This can be used to describe both real and imaginary time-evolution
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Generalizations of MPS to higher dimensions
• The MPS/AKLT picture can be generalized to any geometry : Projected Entangled 

Pair States (PEPS) 

• Properties: Area Law automatically fulfilled; local properties can be approximated 
very well ; guaranteed to be ground states of local Hamiltonians; again, every state 
can be written as a PEPS

• A variational approach based on those states provides a solution to the problem of 
the numerical renormalization group approach where the number of degrees of 
freedom of a block grows exponentially with the size of the block

P maps D4 dimensional  
to d dimenional space



Holographic principle: dimensional reduction

• Crucial property of MPS/PEPS: dimensional reduction

– Start from quantum system in 2 dimensions (2+1)
– The PEPS ansatz maps the quantum Hamiltonian to a state corresponding to a partition 

function in 2 dimensions (2+0)
– The properties of such a state are described by a (1+1) dimensional theory (eigenvectors of 

transfer matrices)
– Those eigenvectors are well described by MPS 
– Properties of MPS are trivial to calculate: reduction to a partition function of a 1-D system 

(1+0)



• How to calculate correlation functions?
– Instead of contracting matrices, we have to contract tensors:
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V. Murg, FV, I. Cirac



Examples of PEPS
• Cluster states of Briegel and Raussendorf are PEPS with D=2: allow for 

universal quantum computation with local measurements only. We can also 
construct other states that are universal using PEPS

• PEPS with topological quantum order:
– Toric code states of A. Kitaev (D=2): fault-tolerant quantum memory
– Resonating valence bond states (D=3)

• PEPS with D=2 can be critical: power law decay of correlations
– Many examples can be constructed by considering coherent versions of 

classical statistical models:

– Resolves open question about scaling of entanglement in critical 2-D 
quantum spin systems: no logarithmic corrections

– PEPS construction shows that for every classical temperature-driven 
phase transition there exists a quantum spin model in the same dimension 
exhibiting a zero-T quantum phase transition with same features

• PEPS provide perfect playground for considering open questions like existence 
of deconfined criticality: all PEPS are ground states
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Interludum: fermionic systems vs. spin systems

• Fundamental question: are fermions fundamentally different from 
bosons/spins or can local fermionic Hamiltonians be understood as effective 
Hamiltonians describing low energy sector of specific local spin systems? 

• Hilbert space associated to fermions is Fock space, which is obtained via 
second quantization:

• What we want to approximate is 
• Effective Hamiltonian for this tensor is obtained by doing the Jordan-Wigner 

transformation on the original one (note the ordering of the fermions in 
second quantization)

• Consider hopping terms in 2-D: J-W induces long-range correlations 
• Solution: use auxiliary Majorana fermions to turn this Hamiltonian into a 

local Hamiltonian of spins  (cfr. Kitaev)

• Similar approach taken by X.G. Wen to show how fermions and actually all 
fundamental particles can be understood as emerging from some much 
simpler bosonic model  
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Solution: add ancillary chains of free fermions bi constructed as follows: define Majorana fermions  
ci =  bi + bi

† , di = i(bi - bi
†)  and free Hamiltonian 

As all terms              are constants of motion (i.e. +1) and commute with each other, we can change 
the original vertical hopping terms                             without changing 
the physics of the Hamiltonian. Renumbering everything makes everything local after the JW
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Fermionic PEPS
• How to build ansatz states for fermionic systems?

– Instead of taking maximally entangled spins as building blocks, 
take Cooper pair type maximally entangled fermions 

– As a projector, take any parity-preserving map (i.e. a linear map 
that e.g. maps 1 fermion to 1 and 2 to 0 or 2).

• Must be so because of locality reasons!

  **baI
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Connection to real-space renormalization group 
transformations?

• We have already seen that DMRG of White is a variational variant of 
NRG of Wilson; what about other real-space RG methods?

• Connection is via quantum circuits

– Cfr: physical Hilbert space is tiny submanifold of whole Hilbert 
space

– can be parameterized by quantum circuits!



Quantum simulators for finding ground states: 
adiabatic time evolution

• Adiabatically following the ground state of a Hamiltonian; adiabatic 
condition:

• That means: we can prepare ground state in phases different from the one 
we start from on a QC if no level crosssing and/or gap scales polynomial in 
system size 

• This suggests that a very good way of representing ground states can be 
found using a quantum circuit!
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Quantum Circuits

• Quantum circuit is a representation of every possible Hamiltonian 
evolution

• What kind of quantum circuits are needed to prepare ground states 
of general Hamiltonians?

– Find inspiration in field of renormalization group methods and 
perturbation theory
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Renormalization group methods as quantum circuits

• General theme:
– All successful RG-methods can be understood as the 

construction of simple quantum circuits to parameterize low-
energy manifold 

– Those quantum circuits can be simulated efficiently in a classical 
way

• For strongly correlated quantum spin systems, we can go beyond 
that as first implicitly done by S. White: take these classes of states 
seriously, and do variational calculations within those classes of 
states

• Case of 1D MPS / Finitely correlated states: DMRG
– Extensions to 2D: PEPS

• Case of DMF:  MERA



RG-methods as quantum circuits
• Numerical renormalization group:
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Class of states generated 
like this: 

Matrix Product States

Virtue: possible to 
calculate any tensor 
product expectation value 
efficiently -> quantum 
circuit that can be 
simulated efficiently on a 
classical computer



RG quantum circuit in the lab

• Class of D-dim. MPS gives a complete characterization of all N-particle states that 
can be created by sequential generation through coupling to a D-level ancillary 
system (Markov chain)

– Photonic qubits generated by a cavity QED source
– Quantum dot coupled to a microcavity
– Interaction of ions with phonons in ion trap

• 1-to-1 correspondence between maps P and unitaries occurring in “cavity”
– Constructive: MPS-structure automatically yields description of how to generate 

states
• Example for D=2: GHZ-, cluster-, W- states

D

C. Schoen, E. Solano, F. Verstraete, J. I. Cirac, M. M. Wolf ‘05



Coarse-graining real-space RG methods

• Properties: block entanglement entropy can grow logarithmically with 
system size over some cuts

• explicit breaking of translational invariance
• Cannot be readily extended to 2D (entropy too small)
• One can do DMRG on such states in exactly the way you do it on 

MPS



• Other RG schemes:  Ma-Dasgupta-Fisher renormalization group
– Random Heisenberg model

– Second order perturbation theory:

– This is a smarter way of blocking as it preserves locality (mapping of 
e.g. 4 spins to 2 but in such a way that locality is preserved) 
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Multiscale Entanglement Renormalization 
Ansatz (MERA) of Vidal can be reinterpreted 
as a formalization of this class of Ma-
Dasgupta-Fisher states

Lesson teached to us by Steven 
White: take a RG method, look at the 
structure of the underlying states, 
and do a variational calculation over 
this class of states

States obtained in Ma-Dasgupta-Fisher 
RG: 

- can violate area laws in 1D

- can be extended to 2D

- critical exponents can be obtained by 
looking at fixed points of rescaling 
transformations



MERA: coarse-graining of lattice

• What about scale-invariant states for fermions: OK
• PS: all MERA states obey strict area law in dimensions>1

Vidal ‘06

Corboz, Evenbly, FV, Vidal ‘09



What happens for non-equilibrium systems?




1

Mutual information and entropy cost / entanglement of purification as a function of  ,

K. Temme, FV ‘09

• Quantum circuits with CP-maps instead of unitaries
• Can again be very well described by MPS; figure of merit is the so-called 

common information or the entanglement of purification



Quantum circuits for diagonalizing Hamiltonians
• One can in principle go further and try to diagonalize a complete 

Hamiltonian using a quantum circuit (cfr. Original approach of Wilson 
and Ma-Dasgupta-Fisher)

– Possible if all low-energy states are “special”

– Should in principle be possible for all cases where the low-energy 
sector can be described by a system of quasi-particles

• Simple example: XY or Ising model in transverse field in 1-D:

grainedcoarseHUHU *
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Example: Ising and XY-model in transverse field 


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- Clearly, full simulaton can be done of any time    
evolution, thermal states can be prepared, …if this 
quantum circuit has been determined

Cirac, Latorre, FV ‘08



Real space RG transformation on the toric code Hamiltonian

• Consider Kitaev’s toric code Hamiltonian on a hexagonal (honeycomb) lattice with 3-
body vertex terms and 6-body plaquette terms

• Is this Hamiltonian a fixed point of some real-space RG transformation?  Certainly OK 
for ground state which has zero-correlation length

• Any Hamiltonian that only consists of frustration-free commuting terms is probably 
fixed point of some RG



• Possible formalism for defining real-space RG on Hamiltonians of quantum 
lattice systems:
– Apply unitary transformations on local blocks such that quantum 

degrees of freedom are turned into classical degrees of freedom 

– This can be done exactly on the toric code Hamiltonian: coarse-graining 
a 12-qubit cluster to a 6-qubit one:
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• There are now 2 obvious approaches that one can take
1. Study the RG flow when adding a magnetic field
2. Study the RG flow at finite T

• Finite-T flow: do the unitary transformation, trace out the classical 
degrees of freedom, and calculate new effective temperature.
– For low T:

– As expected, you flow away from the zero-T fixed point and 
there is no finite-T phase transition that can be detected

– Situation in 3D and 4D should be different: the disentangling 
couples excitations with each other, which can lead to a 
decrease of T during the RG flow

Can we characterize all the possible fixed point Hamiltonians of such RG 
transformations ?





Quantum many-body systems and computational 
complexity

• Open question: what is the difficulty of finding ground states of many-body 
quantum systems?

– Finding approximate solutions of many-body Hamiltonians has been the 
central problem in quantum mechanics since 75 years

“The underlying physical laws necessary for the mathematical theory of a large 
part of physics and the whole of chemistry are thus completely known, and the 
difficulty is only that the exact application of these laws leads to equations much 
too complicated to be soluble. It therefore becomes desirable that approximate 
practical methods of applying quantum mechanics should be developed, which 
can lead to an explanation of the main features of complex atomic systems 
without too much computation.” (Dirac, 1929)

• Obvious that a brute force approach scales exponentially in the number of 
particles; we have seen that in principle you can do better (breaking of 
exponential wall), but can we proof this?



Computational complexity of finding ground states

P

BQP

NP

QMA

• P: class of problems that can be solved efficiently using classical computer
• BQP: class of problems that can be solved efficiently using quantum 

computer
• NP: class of problems whose solution can be checked efficiently using 

classical computer
• QMA: class of problems whose solution can be checked efficiently using 

quantum computer



Complexity of simulation many body systems

• Quantum computing puts us in a unique position to quantify the 
complexity of simulating quantum systems

– Contrasting quantum to classical is crucial to get a deeper 
understanding of the power of quantum information processing

– There are very successful algorithms out to simulate strongly 
correlated quantum systems in quantum chemistry and 
condensed matter physics: it is relevant to identify their 
limitations

– Interesting fundamental questions on the nature of entanglement 
in physical systems

• Identifying manifold of all low-energy states of all local quantum spin 
Hamiltonians



Density Functional Theory

• Hohenberg-Kohn: ground state energy is completely determined by the local single 
electron density n(r) 

– T and U are universal for all systems, and V is a simple function of n(r); so if we 
fix n(r), we can for once and for all solve

and then minimize F(n(r))+T(n(r)) as a function of n(r)
– Similar treatment when spins and magnetic fields are included
– This effectively reduces an N-body problem to a 1-body problem

• Assume that we have an efficient (P) description of the function F(n(r)); what power 
would it give us, i.e. what would that imply in terms of computational complexity?

– QMA (quantum NP) collapses to P !
this is exactly quantum many-body versus quantum 1-body

– Proof uses perturbation gadgets and essentially maps Schrodinger equation to 
Hubbard model to 2-D local Hamiltonians which is known to be QMA-complete 

))((minarg )()( rnFUTrnn  



Complexity of finding ground state energy of 
quantum spin Hamiltonians

• 2-D classical spin glass:
NP-complete

• General 2-local quantum spin Hamiltonian: 
QMA-complete 

• General 2-local quantum Hamiltonian with n.n. interactions on a 2-D 
lattice: QMA-complete

• General n.n. interactions on a line with 12-level systems: QMA-
complete
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N-representability

• Central problem in quantum chemistry: characterize the convex set 
of 2-body reduced density operators
– Reduces to checking consistency of a set of correlations: is there 

a global state compatible with set of 2-body correlations

– Difficulty stems from frustration / monogamy of entanglement 
(cfr.also de-Finetti theorem, mean-field theory (Werner ‘88)).

• By using mapping                                                
and a Turing reduction, checking consistency can be shown to be 
equivalent to QMA-complete problem of Kitaev
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• But nature does itself not find those ground states: all we have to do 
it so be as smart as nature!

– Hardness in finding ground states is just the worst-case 
scenario, and even then simulation must not outperform nature!

– Note that there is no contradiction in hardness results and proofs 
of easy way of parameterizing all possible solutions in terms of 
MPS/PEPS/MERA

– In practice: we think that quantum lattice Hamiltonians (spins 
and fermions) can be simulated using classical computers at 
polynomial cost 



Using ground states of quantum Hamiltonians to 
do quantum computation

– As there are so many quantum correlations in ground states, can 
we exploit them to do quantum computation?

– Or differently: can we exploit a cooling mechanism as used in 
nature to do quantum computation for us?

• Both answers can be answered affirmatively: 

– Cluster state quantum computation of Briegel
– Dissipation based quantum computation



Multipartite entanglement and quantum computation

• Measurement based quantum computation with PEPS: cluster state 
quantum computation of Raussendorf and Briegel; the virtual qubits
represent the logical qubits

= Postselected
teleportation-based                                                           
computation
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Dissipation based quantum computation

• What is the minimal level of control needed to do universal quantum computation?
– To what extent can we relax the DiVincenzo criteria?
– Can we use dissipation as a good thing instead of fighting it?

• Enough to engineer time-independent couplings of system with a Markovian 
reservoir, wait poly time until system relaxes, and read out result of your quantum 
computation in the steady state

FV, Wolf, Cirac, Nat.Phys. ‘09
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What about simulating quantum systems using 
dissipative processes ?

• Q analogue of Markov-chain algorithms:

• This is particularly well suited for finding ground states of frustration-
free quantum Hamiltonians: 

– The ground state is a fixed point of the Liouvillian if

• Natural choice:                              (U e.g. random unitary) 
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• Such frustration free Hamiltonians pop up everywhere:

– 2-SAT, 3-SAT, quantum 2-SAT, …

– MPS/PEPS are guaranteed to be ground states of frustration 
free Hamiltonians

• Kitaev/Hastings: every ground state of a gapped local Hamiltonian 
is also the ground state of a local frustration free Hamiltonian

– Kitaev Hamiltonian used in construction of QMA-complete 
quantum Hamiltonian:

• Frustration-free if we leave out Hf and include proper initialization 
conditions-> Hamiltonian used in universal adiabatic quantum 
computation!
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Dissipative quantum computation
• What is the computational power of a purely dissipative quantum systems with 

local Lindblad operators and no coherent evolution?

– BQP-complete: as powerful as a quantum computer!
– Proof: 

• Gap of Liouvillian independent of actual quantum computation done: 
• Defies some of DiVincenzo criteria for QC: no initialization, no unitaries, …
• Robustness issues, fault tolerance, comparison with adiabatic QC?

• Gap of the Liouvillian quantifies complexity of simulating system on a quantum 
computer: P vs. NP

• Gap of Hamiltonian: does not tell anything about computational complexity: 
Ising spin glasses have gap 1, but gap in Liouvillian should be exponentially 
small (has this been proven?)
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Dissipatively driven quantum phase transitions

• Can a quantum phase transition be driven by dissipation?
• One can easily construct families of frustration free Hamiltonians that exhibit 

quantum phase transitions: “Rokhsar-Kivelson” Hamiltonians
– Take any classical spin system exhibiting finite-T phase transition (e.g. Ising

model)

– Define the quantum state which is coherent version of partition function:

• Has exactly the same correlation functions as classical one
• Is ground state of local frustration-free Hamiltonian which depends on parameter 

beta : PEPS!
• Obviously exhibits a quantum phase transition if parameter beta is varied

• Hence: zero-temperatuere quantum phase transitions can be driven by 
dissipative processes
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Conclusion

• Formalism of quantum information theory provides new perspectives on strongly 
correlated quantum systems

– MPS/PEPS picture describes low-energy sector of local Hamiltonians, and 
opens a whole new toolbox of numerical renormalization group methods that 
allows to go where nobody has gone before

• Similar ideas can be used in context of lattice gauge theories, quantum chemistry, 
…

– Frustration and monogamy properties of entanglement (cryptography), 
quantum error correction, and the complexity of simulating quantum systems 
are basic notions in the fields of quantum information and statistical physics 

– Synergy of quantum information and the theory of strongly correlated 
quantum systems opens up many new themes for both fields and could lead 
to a much more transparent description of the whole body of many-body 
quantum physics 


