

Cold atoms MOT above surface reflection MOT, Kim et al 1997 - Reflecting gold layer Bring atoms to Chip B) Magnetic Micro-Trap U- Z-wire structures under the chip to assist with loading and cooling (evaporation) A) Ga As-substrate Reichel et al. PRL 83, 3398 (1999) Folman et al. PRL 84, 4749 (2000) Matched loading: c) B = 10 GI = 2x0 A/300 mA a) B = 10 G b) B = L0 G d) B = 50 G Load into successively smaller I=2x0.5 A/300 mA $= 2x^2 A/300 mA$ I = 2x0 A/300 mA <u>ι0μ</u>____ traps and guides smooth switching of currents 0.2 mm 0. L mm l mm Observe atoms close to the Unmatched loading: surface c) B = 10 G a) B = 10 Gb) B = L0 G d) B = LO GI = 0.2 A/300 mA I = 2 A/300 mAI = 0.5 A/300 mAI = 0 A/300 mAfluorescence imaging 0.1 mm 0.2 mm 0.1 mm l mm absorption imaging expand the tightest traps to see atoms minin hin 1111 minnin IBK-Summer School July 2009 J. Schmiedmayer: Atom Chips

LOADING THE ATOM CHIP

Atom Chip Mounting

Heidelberg

Big magnetic trap to give large BEC Large MOT without quadrupole coils on-site independent from the chip

- · Cu structure combining various Uand Z- traps;
 - Low resistance; large trapping volume; high gradients
 - >2 x 10⁸ Atoms trapped
 - 200 μ m away from chip - Vacuum < 1 × 10⁻¹¹ mbar
- · Connections to chip bonded: Enables absorption images down to chip surface

U-Wire trap

improved U-trap

39

BEAM SPLITTER FOR GUIDED ATOMS

Omni-Directional Guiding

The direction of the bias field relative to the wire will determine the potential minimum in that plane:

For bent guides the bias field has always to have the same angle relative to the wire.

Remember: 1mG ~ 67 nK At 10G bias field this corresponds to an angle of 10⁻⁴ rad

IBK-Summer School July 2009

J. Schmiedmayer: Atom Chips

Guiding in any direction

TOP trap guide to remove the zero of field

IBK-Summer School July 2009

Influence of wire width ATOMINSTITUT

45

Heidelberg

Actual current density determines trap properties

7Li

Atom Transport

Combining Electric Manipulaion with Magnetic Trapping

The electric field leads to an interaction potetial: $U = -\frac{1}{2} \alpha E(r)^2$ It always attracts atoms towards higher field. No stable trap possible with static electric fields for ground state neutral atoms

Combine electric & magnetic interaction:

 $U(\mathbf{r}) = g_F m_F \mu_B B(\mathbf{r}) - \frac{1}{2} \alpha E(\mathbf{r})^2$

Manipoulation with Electric Fields

B + E splitters

Heidelberg

dynamic splitting of a trapped cold atomic cloud with electric fields

Combine electric & magnetic interaction:

Atom Chip BEC

Time of flight

Quadrupole mirror MOT 10 sec loading, >10⁸ At. U-mirror MOT transfer without losses Optical Molasses. 15 ms, <100 µK Optical pumping -> |2,2> Magnetic Z trap. > 10⁸ atoms @ 250 µK Compress trans.: ~500 Hz ~400 G/cm long.: ~ 50 Hz RF-Evaporation ~20 sec linear ramp BEC 3 10⁵ atoms @ T_c < 1 µK

First chip_BECs; Ott et al. BRL 87, 230401 (2001); Hänsel et al. Nature 413, 498 (2001)

Heidelberg

thermal cloud

1 μK

transition to BEC

500 nK

Apparatus:

- single chamber vacuum system operated with pulsed Rb-dispensers (p<10⁻¹¹ torr)
- optimized U-MOT, >3 10⁸ atoms
- magnetic trap with ~10⁸ atoms
- pre cooled thermal atoms (~10μK) transferred to various traps and guides
- BEC (up to >10⁵ atoms) in different chip traps
- trapping and cooling in both |F=2 m_F=2> and |F=1 m_F=-1> states
- atom shot noise limited imaging with 3 µm resolution
- detection limit: $n_{1d} \sim 1$ atom/µm

IBK-Summer School July 2009

J. Schmiedmayer: Atom Chips

S. Wildermuth, et al, PRA 69, 030901(R) (2004)

pure BEC

MPQ Munich

Transporting BEC on Chip

Hänsel et al Nature 413, 498 (2001)

Transport of BEC along the chip

Evaporative cooling in a micro trap on an Atom Chip in < 1 sec.

Imaging close to the surface measure distance

A single-atom fluorescence camera

R. Bücker et al. arXiv:0907.0674

Experimental realization

- Atom cloud is released from chip trap
- After 4 8 mm fall it passes a thin sheet of light:
- two counter-propagating lasers, 20 µm waist
- resonant / detuned from $|5S_{1/2}, F=2> \rightarrow |5P_{3/2}, F=3>$
- in light sheet, each atoms scatters \sim 900 photons
- a high NA imaging system captures 20 photons - numerical aperture 0.34
- depht of field 40 µm (essentially zero background)
- spatial resolution 8 µm over 4 mm diameter
- intensified (EMCCD) camera records images
 major noise source: clock induced charges ≅ 1 photon

IBK-Summer School July 2009

Fluorescence Camera Single Atom Detection

Fluorescence Camera Large Dynamic Range

The large dynamic range of the single atom sensitive imaging allows to see very small thermal clouds besides the BEC, and measure very small temperatures $T\sim T_c/10$

INTEGRATION OF LIGHT ON THE ATOM CHIP

Goals: Preparation, Manipulation, Detection of atomic states on the Atom Chip Tools: Micro optics: cavities, lenses, waveguides

Techniques of coupling to the atoms: Two mirror resonators, evanescent fields of micro spheres or micro discs, SNOM techniques, fiber cavities

State selective, non-demolishing, single atom detection; Integration of all micro optical elements, including light sources, onto the Atom Chip

Detecting Atoms Integrating Light on the Atom Chip

Goal:

Detect single atoms with an integrated detector on an Atom Chip

First approach:

- Fluorescence detection
- Detection by absorption of on resonant light $\eta_{abs} \sim \sigma_{atom} / \pi w^2$
- Enhance sensitivity with a cavity

 $\eta_{abs} \sim F \sigma_{atom} / \pi w^2$

Requirements for single atom detection

- small waist size $(w \sim 3 \mu m)$
- moderate finesse (F~100)
- state selectivity (line width << HF spac.)
- integration

First experiment:

Detecting magnetically guided atoms with an optical cavity A. Haase, et al. Opt. Lett. **31**, 268 (2006) J. Schmiedmayer: Atom Chips

Theory proposal:

Possibility of single atom detection on a chip P. Horak et al. Phys.Rev.A 67, 043806

Arom Detection basic designs

71

MPQ/ENS

Integrating Cavity QED on Atom Chip

HD

Cavity with curved front mirrors:

- 5 μm waist, ~25 μm gap.
- finesse >10000
- tuning using a macroscopic mounting
- active alignment
- On the limit to do cavity QED

- •finesse >100
- •tuning using a piezo stretcher
- •no alignment needed

Integrating Fiber Cavities on an Atom Chip

Fibre cavity formed by (gluing) dielectric mirrors at the fibre ends + gap to introduce atoms connecting the cavity to two fiber ends

SM-fiber

- 2.5 μ m waist
- 5 µm gap
- finesse >100
- The cavity length is scanned using a piezo stretcher
- no alignment needed when mounted using SU8 structures
- >99% coupling through the gap

>5 σ detection of a single atom in 10 μs

with curved mirrors

- Finesse > 1000,
- w~2.5 µm
- gap up to >50 μm

IBK-Summer School July 2009

J. Schmiedmayer: Atom Chips

Atom Detector characterizing by photon statistics

Absorption Detection

preliminary

July 2009

IBK-Summer School

100

200

300

400

Time of Flight

500

600

IBK-Summer School July 2009

NOISE: the bad guy life time, heating, decoherence

Heidelberg / Potsdam

Decoherence in magnetic micro traps close to surface internal states:

Decoherence rate is the same order of magnitude as spin flip rate

external states: transverse, longitudinal

Separation larger than correlation length I.: -> decoherence is similar to spin flip rate

For thermal currents I, is in order of the height above the chip

$$\gamma \simeq 75 \mathrm{s}^{-1} \frac{(\mu/\mu_{\rm B})^2 (T_s/300 \mathrm{K})}{(\varrho/\varrho_{\rm Cu})} (\mathrm{Tr} Y_{ij} \times 1\mu \mathrm{m})$$

Geometry	${ m Tr} Y_{ij}$
Half-space	π/h
Layer	$\pi d/h^2$
Wire	$\pi^2 a^2 / (2h^3)$

Technical current noise

$$\gamma \simeq \frac{\mu^2}{2\hbar^2} \left(\frac{\mu_0}{2\pi h}\right)^2 S_I(\omega_L)$$
$$\simeq 2.6 \mathrm{s}^{-1} \frac{(\mu/\mu_B)^2}{(h/1\mu\mathrm{m})^2} \frac{S_I(\omega_L)}{S_{\mathrm{SN}}}$$

Other mechanisms: Majorana transitions in a harmonic trap

C. Henkel

Lifetime as the atoms approach the surface

Potsdam

83

J. Schmiedmayer: Atom Chips

Harber et al (2003) In good agreement

JILA data

with calculations of Carsten Henkel

IBK-Summer School July 2009

• Observe Casimir Polder intertaction between the atom and the surface

PRL 92, 050404 (2004)

www.AtomChip.org

From where do the dissorder potentials come from

- Atoms are trapped in the minima of potentials created by the subtraction of two large fields.
- Minimum in that plane depends on the angle between these two fields.
- Sensitivity to changes in the current direction which are **not** orthogonal to the bias field.

• Sensitivity: thermal atoms: $1G \sim 67 \,\mu\text{K}$ BEC: chem. potential (~1-10 mG)

- sensitivity < 10⁻⁵ rad
- Roughness of the wire edge causes the current to deviate from a straight flow (we choose evap. gold and nanofab.) for theory see: Daw-Wie Wang et al. PRL 92, 076802 (04).
- Imperfections in the surface of substrate (we chose Si and GaAs).
- Disordered current flow due to grain size in the wire.

Proposal:

Fragmentation

~250 µm (guasi) periodic break up of a cold cloud observed above (3-500 μ m thick) copper wires. Tübingen, MIT, Sussex, JILA ... etc.

Fragmentation due to corrugations in mag. potential.

Solution: fabrication method

IBK-Summer School July 2009 J. Schmiedmayer: Ator

Thermal cloud, .5 µK

Tübingen: change the direction of longitudinal bias field By.

-200

Ξo

200

-200

200

-200

ξo

200

-200

ξ o

200

0

Ш 0

Roughness of the magnetic potential evaporated gold Atom Chips

Heidelberg/WIS

d=100 µm No fragmentation for a thermal cloud even at T~500nK Some fragmentation for a BEC below 10 μ m from surface d~2 µm Disorder potentials ~ 10nK or smaller distance [mm] Bose-Einstein condensate duosq2 0.2 d=15 µm Expanding BEC 10 shows finges 20

Comparison

P. Krüger et al. Phys. Rev. A 76, 063621 (2007)

What causes the disorder potentials?

IBK-Summer School July 2009

J. Schmiedmayer: Atom Chips

93

Roughness of the micro wire microscope images of the surface quality of the wire

HD/WIS/ATI

How smooth are the potentials

Measured roughness corresponds to <1 cm in 1000 m (pretty boring ski slope) We can see < 1 mm in 1000 m

Present experiments can measure changes in

- Changes in magnetic field direction of < 10⁻⁶ rad
- electric fields, patch charges of small impurities <10 mV at um distance
- Resolution <4µm (or better)

95

Designing Potential by Sculpturing the Wire

L. Della Pietra et al. Phys Rev A 75, 063604 2007

How to measure potentials with ultra cold atoms

Basic idea: Cold atoms accumulate in a trap according to their energy

$$\Delta V(x) = -\hbar\omega_{\perp}\sqrt{1 + 4a_{\rm scat}n_{\rm 1d}(x)},$$

1 kHz ~ 70 nT (0.7 mG)

IBK-Summer School July 2009 J. Schmiedmayer: Atom Chips

Sensitivity Compare to other methods

Wildermuth et al. Nature 435. 440 (2005)

Application in Solid State Physics: Long-Range Order in Electronic Transport through Disordered Metal Films: Science **319**, 1226 (2008) July 2009 JBK-Symmer School J. Schmiedmayer: Atom Chips

101

1 C

ATOMINSTIT

Long-Range Order in Electronic Transport through Disordered Metal Films S. Aigner, et al. Science **319** 1226 (2008)

0.5

O

-0.5└ -0.5

Current flow around a defect

Current flow around a defect

emergence of the 45° pattern from a random arrangement of defects 100 50

Reduction of Potential Roughness

Measuring Surface Charges with BEC

 $\ensuremath{\mathsf{trapping}}$ potential with and without patch charges

Changing the potential by applying an additional field

• Trapping potential (radial trap frequency ω_{trap}) depends on the surface patch charges.

JILA

- Measuring the dipole excitation allows very precise measurement of ω_{trap}

