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The most interesting recent development in ultracold gases
has been the study of superfluid Fermi atomic gases. What
makes Fermi gases so interesting is that the strength of the
inter-atomic interactions can be tuned easily by using a
Feshbach resonance. Research on this topic has exploded
since 2003.

In a two-component Fermi gas, by increasing the attractive
interaction, one can smoothly go from a BCS phase
( Fermi quasiparticles moving in a Cooper pair condensate) 
BEC phase (involving a Bose condensate of molecules).
The Feshbach resonance allows us to study this crossover.



These bound states in interacting Fermi gases are 
Bosonic in nature and hence can Bose condense, just
like Bose atoms can. As a result, in trapped Fermi gases,
a sort of Bose condensate appears once again. It can 
describe a molecular Bose condensate or a Cooper
pair condensate, immersed in the gas of unpaired
Fermi atoms.

In the extreme limit, all N Fermi atoms form N/2
bound states.This is the BEC limit of an interacting 
Fermi gas. It is effectively a Bose-condensed gas of 
N/2 molecules, each with mass M = 2m.



This BCS-BEC crossover is beautiful physics. It has
deepened our understanding of the relation between the
BCS and BEC superfluids, showing that they are unified
by the role of a Bose condensate of bosonic pair states
in both cases. In the older literature, this BEC aspect
of the BCS theory was not realized or emphasized.
It also allows us to produce a strongly interacting Bose
gas of bosonic dimers composed of two Fermi atoms.

It gives us a superfluid Fermi gas with strong interactions
which allow us to achieve local hydrodynamic equilibrium.
When the scattering length is infinite (unitarity), we have
strong collisions and hence the Landau two-fluid
hydrodynamic equations will be valid. This gives a new
system where we can look for the characteristic first
and second hydrodynamic oscillations.



The BCS-BEC crossover is both interesting and complicated
because the thermal excitations which determine the
thermodynamic quantities involve both a Fermi spectrum
and a Bose spectrum.

In the BCS weak coupling phase, we shall see that there are
the expected BCS fermi quasiparticles plus the collective
oscillations of the Cooper pair condensate. The latter are
the Anderson-Bogoliubov Goldstone bosons.

As we go over to the BEC side, the BCS quasiparticles 
disappear as the Fermi atoms pair up to form real
molecules. The end result is that are left with a gas of
interacting bosonic molecules. The excitations of this
molecular Bose condensate can be described in terms of
Bogoliubov excitations.

All this will become clear( I hope!) in this lecture



Why work with a two-component Fermi gas?
�At ultra-low temperatures,  atoms have very low 
momentum and hence only the lowest partial wave
contributions from the interaction need be kept. 

� Only the s-wave scattering contribution is large, but this 
does not arise between identical Fermions because of the 
Pauli principle. However,  it can occur between atoms with 
different values of mF (denoted by spin⇑ and spin ⇓). 

� This s-wave scattering allows rapid thermalization and 
hence cooling of the two-component Fermi gas.



What are Feshbach Resonances?
�The key to creating the BCS-BEC crossover is the use of
Feshbach resonances in the atomic scattering cross-section.
These are a two-body phenomenon and exist in both Bose and
Fermi gases. However, they are most useful in Fermi gases,
for reasons we explain later.

�Such resonances arise when two colliding atoms have a total 
kinetic energy very close to the bound state energy level of a
molecular potential (the so-called closed channel).

�The energy of the bound state molecular level can be shifted
( tuned ) by a small magnetic field B. The effective s-wave 
scattering length aF has a resonance when the bound state 
has zero energy. 



Two fermions in open channel strongly couple
to a bound state, with energy εεεεres 

Two body physics of how dimer states can be created. 
Process is reversible (adiabatic).



aS = abg(1+ w
B0 − B

)

ε ∝B − B06Li Hulet et al Molecules only form when 
a2b > 0 . This is equivalent 
to εεεε < 0 or B < B0.

Feshbach resonance: two body physics

These very weakly bound molecules on the BEC side interact with
each other with a s-wave scattering length aM =0.6 aF and are very
long-lived. Since the dimer is composed of Fermi atoms in different
Fermi states, an unpaired Fermi atom is repelled by Pauli exclusion
and thus three body processes are suppressed. Almost by magic,we
can produce a strongly interacting molecular Bose-condensed gas !



The blue curve represents the phase boundary
into the superfluid state of bound pairs.

ε ∝B − B0



BCS superfluid phase: a quick review
A two component Fermi gas (electrons in metals,3He atoms, alkali atoms) with an attractive interaction 

Is unstable to the formation of a bound state of two 
Fermions (of “opposite” spin). This Cooper pair is a 
many-body effect, and only arises in a degenerate 
Fermi gas . It does NOT depend on the interatomic 
potential having a real “bound state”.

Once these Cooper pairs (Bosons) form at TBCS , they 
produce a Cooper pair condensate. The remaining Fermi 
atoms swim around in this condensate soup, and develop 
a gap ∆∆∆∆ in their single particle energy spectrum.



Using a pseudopotential for the s-wave interaction between
spin up and spin down Fermi atoms,

V = dr d ′ r ∫∫ ψ↓
+(r)ψ↑

+( ′ r )v↑↓(r − ′ r )ψ↑ ( ′ r )ψ↓ (r)∑
= −U drψ↓

+(r)ψ↑
+(r)ψ↑(r)ψ↓(r)∫

= −U c p↓
+ c− p↑

+ c−q↑cq↓p,q∑ ψα (r) = e ip.rc pαp∑
  v↑↓(r − ′ r ) =

4πh2a↑↓m δ(r − ′ r ) ≡ −Uδ(r − ′ r )



H − µN = (εp,σp,σ∑ − µ)c p,σ+ c p,σ −U c p↑
+p,q∑ c− p↓

+ c−q↓cq↑

∆ =U 〈c−q↓q∑ cq↑〉 ≡UφC≈ (εp ,σp,σ∑ − µ)c p,σ+ c p,σ − (∆c p↑
+p∑ c− p↓

+ + h.c.)

This is the essence of the famous BCS-Gorkov theory of 
superconductivity in an interacting Fermi gases with an 
attractive interaction - U. The order parameter φφφφC
describes bound states of two Fermions, which are Bose-
condensed into the same state. Remark:This MFA theory 
ignores Cooper pairs outside of the condensate.

Cooper pairs

⇒⇒



Physics and math of BCS-Bogoliubov quasiparticles
One diagonalizes the BCS-Gorkov mean field Hamiltonian
using the famous Bogoliubov transformation

The αααα, αααα+ quasiparticle operators to satisfy Fermi 
anti-commutation relations,such as

As a result, the Bogoliubov amplitudes u and v must 
satisfy the normalization condition

We have reduced problem to a gas of non-interacting
Fermi quasiparticles. Our favorite easy problem!

c p↑ = upα p↑ + v−pα− p↓
+

c p↓ = upα p↓ − v−pα− p↑
+

α p↑,αq↑
+[ ]+

= δp,q
up↑

2
+ v p↑

2
=1



Calculation gives the following explicit expressions for
the Bogoliubov u and v coefficients

where the BCS quasiparticle excitation energy is
up2 = 12 1+

εp − µE p        v p2 = 12 1−
εp − µE p        

E p = εp − µ( )2 + ∆2[ ]1/ 2
This BCS mean field approximation is thus diagonalized 
by this Bogoliubov transformation:

HBCS − µN = E pα pα
+p,α∑ α pα + const.



The self-consistent equations for the BCS gap ∆∆∆∆
Clearly, we have two quantities we need to calculate using
our quasiparticle solution, namely the chemical potential µµµµ
and the energy gap ∆∆∆∆. The number equation is 

using the fact that     〈αααααααα〉 = 0 and 〈αααα+αααα+ 〉 = 0. Since the
quasiparticles are non-interacting Fermions, 〈αααα+αααα〉 = f (E)
is the Fermi distribution function for quasiparticles. Thus

This is the BCS number equation, giving N as a function of
µµµµ and ∆∆∆∆.

N ≡ cqα
+ cqαq,α∑ = uq 2 αq↑

+ αq↑ Bog + v−q 2 α−q↓α−q↓
+ Bog[ ]q∑

N = NF = 1−
εq − µ
Eq + 2εq − µ

Eq f (Eq ) 
  

 
  q∑



The self-consistent BCS gap equation
We recall that the Cooper pair order parameter was defined as

This can again be easily calculated by writing c and c+ in terms 
of Bogoliubov quasiparticles, just as we did for the density,

One last thing we have to do is renormalize the bare attractive
interaction U to remove problems at high momentum.This turns
out to be given by the two-body s-wave scattering length a2b.  

∆ ≡U c−q↓cq↑
≡UφCq∑

∆ =U uqvq αq↑
+ αq↑ + αq↓

+ αq↓ −1[ ]q∑
=U uqvq 2 f (Eq )−1( )q∑ =U ∆

2Eq 2 f (Eq )−1( )q∑



N = NF = 1−
εq − µEq + 2εq − µEq f (Eq )      q∑

To summarize, the standard BCS theory reduces to two 
coupled equations for the number of fermions N and the
gap function ∆∆∆∆ ( this is the BCS order parameter):

In standard weak coupling limit (when kF|a2b| << 1),
there is no solution of the gap equation unless a2b is 
negative. In this weak coupling BCS limit, one finds that 
µ ≅ εF. The BCS transition temperature is given by

TBCS = TF exp − π
2kF a2b 

  
 
  << TF

  1= − 4πh2a2bm 1− 2 f (Eq )2Eq − 12εq      q∑



As the magnitude of the attractive interaction is increased, 
the Cooper pairs become more tightly bound and eventually
we pass over to a region described as a dilute gas of small
Cooper pair molecules. This is the famous BCS-BEC
crossover, first studied in Eagles in 1969 and in the 1980s by 
Leggett ( at T=0) and Nozieres (at Tc). At the same time, the 
spectral weight of the Fermi atoms decreases , as they combine 
to form Cooper pairs.

The BCS-BEC Crossover -1980s

BCS BEC



Somewhat surprisingly, BCS-BEC crossover at T = 0 can be
studied simply by using these full number and gap equations
And letting kFa2b to be an adjustable parameter. Let the 
solutions tell us what happens! (Leggett, 1980) 

It turns out that the dimensional parameter (kFa2b)-1 covers 
the range

BCS BEC
as the bare attractive interaction is steadily increased. These
original calculations did not address how one could vary 
the value of the s-wave scattering length. Feshbach resonances
allow you to do this easily in trapped atomic Fermi gases!!

−∞ → 1kFa2b → +∞



As one crosses from the BCS side to the BEC side
of the feshbach resonance, the self-consistent value of
the chemical potential decreases from the Fermi energy
down to zero, and then becomes large and negative. The
BCS quasiparticle dispersion energy changes
dramatically when the chemical potential is negative
and large, since there is now large energy gap at k = 0,
not at the Fermi surface k = kF as on the BCS side

Ek = εk − µ( )2 + ∆2[ ]1/ 2
When µ is large and negative, the Fermi surface is no
longer important for the Fermi quasiparticles and the energy
gap is very large and is given by |µ|, not by ∆. The Fermi
quasiparticles get frozen out, letting the phonon modes
dominate increasingly in the BEC side. These become the
Bogoliubov phonons.



Engelbrecht, Randeria andSa de Melo,  PRB, 1997Dashed line - - - - shows the smooth decrease in size of the bound state pair as we go from BCS to BEC region.
1kF ∝ n−1/ 3 ≈ d



Sa de Melo , Randeria and Engelbrecht, PRL, 1993

T*

TC is the BCS-BEC superfluid phase transition temperature. T* shows where the bound states breakup or ionize. Note that the weak couplingTBCS result corresponds to the breakup of Cooper pairs, not depletion.
BCSlimit BEClimit
Tc /TF 1 kFaS( )

- 2                -1                  0                  11 kFaS( )

µ(TC )
εF Einstein, 1925



A crucial bit of physics is left out of the BCS number 
and gap equations
When we think about it, our BCS equations implicitly assume
that all the Cooper pairs are Bose condensed in the same center of 
mass momentum state, qCM = 0 state. In the BCS number equation, 
we only calculated the contribution of the Fermi quasiparticles
and ignored the dynamics of the pairs.

But it turns out that as the value of a2b becomes > 0, the Cooper 
pairs become stable two-particle states and can occupy finite 
momentum states.Thus T is increased, more and more Cooper 
pairs leave the condensate. In this improved theory, TC will 
correspond to where the bound pair condensate is depleted, 
just like the ideal Bose gas that Einstein considered in 1925! 
Nozieres (1985).



The method used by Nozieres and Schmitt-Rink (1985)
replace the BCS number equation by calculating the
number of Fermions using the thermodynamic identity

where the thermodynamic potential Ω(µ,T) of the 
interacting Fermi gas is given by: 

Ω(µ,T )  = free energy of a Fermi gas of atoms
plus

free energy of fluctuations in the 
particle-particle channel.These
correspond to the formation of bound 
states of two atoms with finite center 
of mass momentum. 

The calculation of all this involves a lot of many body
theory, but the esssential physics is simple.

N ≡ −∂Ω
∂µ

Left out in BCS⇒



Equilibrium thermodynamics: thermal 
excitations through the crossover

• Need to know equilibrium thermodynamic quantities, including
ρs and ρn, to calculate hydrodynamic mode frequencies.

BCS limit: BCS quasiparticles from breakup of Cooper pairs.BEC limit: phase modes (phonons). Close to unitarity, both modes exists.  They are strongly coupled.
• There are two types of thermal excitations:

• Calculation of thermodynamic quantities requires knowing what the
thermal (elementary) excitations are in the crossover.

We use the Nozières/Schmitt-Rink theory is used to include these 
excitations. Pairing fluctuations beyond mean-field are needed to get 
the correct physics through the crossover.



The final thermodynamic potential reduces to the usualexpression for a gas of non-interacting Fermi and Boseexcitations,
Once one has determined the the energy gap ∆ and chemicalpotential µ of the BCS excitations in a self-consistent fashiontaking into account the formation of pairs, the problem ofdetermining the thermodynamic potential is reduced to anumerical integration.
in terms of the BCS quasiparticle energies Ek and thebosonic mode energies ωωωωq . One can obtain all thermodynamic quantities needed in the two-fluid equations from this kind of Ω .   Ω = ∆ 02U + 12 hωq∑ + ξk − Ek( )− 2

β∑ ln 1+ e−βEk( )+ 1
β

1− e−βhωq( )∑∑



BCS limit

BEC limit

Superfluid density in the BCS-BEC crossover

These two limits are well known. At unitarity, both Fermi and Boseexcitations enter into the superfluid density



Second sound in Superfluid Fermi gases at unitarityUsing the previous theory, we have evaluated all the thermodynamicfunctions which appear in the two-fluid equations. We have done thisfor a uniform Fermi gas at unitarity, which is the region of greatestinterest and where the Landau two-fluid equations are expected tobe valid. This already requires extensive numerical work. We then usethese uniform gas results to obtain the thermodynamic functionsin a trap by using the standard local density approximation (LDA).To find solutions of the Landau equations, we still have to solve thesedifferential equations, where the coefficients are dependent on position.This is a difficult math problem! What we have done is to developa variational procedure to solve these equations, starting from an ansatzof eight powers of r, the coefficients being the variational parameters.This work was mainly done by Ed Taylor and Hui Hu. So far, we haveonly considered breathing two-fluid modes in an isotropic trap.We believe our numerical results for the frequencies of first and secondsound in a trapped gas are quite accurate, because we have also obtained analytic solutions for the second sound at very low T and also near Tc. 



Submitted to Nature Physics just two days ago!
This paper has taken us about four year of work.
It grew out of Ed Taylor’s Ph.D thesis at Toronto



Note that both first and second sound appear as poles of thedensity response function, but with quite different weights.
Linear response gives the density fluctuation to first order inthe perturbation. For a uniform gas, this is easily found:where the sound velocities are the solutions( see Lecture 1)



One can insert these solutions into the Landau equations and check:First sound is a simple in-phase motion of two componentsSecond sound is an out-of -phase motion of two componentsIn other words, the modes are very similar in nature to those in superfluid 4He.
  

δr v s = δr v n and δT = 0  ρs0r v s = − ρn0r v n i.e. δ
r j = 0 and thusδρ = 0



First and second sound velocities
in a uniform Fermi gas at unitarity

At low T, the bosonic phonons dominate the thermodynamicsAt higher temperatures, the Fermi quasiparticles are mostimportant thermal excitations ( they play the role as rotons in He.



Pulse propagation in long cigar-shaped traps

Experiments by the groupof John Thomas at DukeUniversity, USAThese results are done at unitarity in Fermi gas but at very low T



First and second sound frequencies at unitarity in a trapped gasThe left side shows thespectrum of first andsecond sound breathingmodes, as a function of TThe horizontal lines arefirst sound branches andthe vertical lines aresecond sound.To date, the only breathingmode studied by experimentis the lowest frequency firstsound mode. This happensto be independent oftemperature. 



Thank you for inviting me to this Winter School!

Thank you for listening to me talk about my research!

Adios!


