
Buenos Aires Lecture 2-Griffin

Two-fluid hydrodynamics in a Bose-condensed gas
We now turn to extending the T = 0 theory we discussed this
morning to finite temperatures by including the effect of the
thermal cloud atoms. Our starting point is the exact
equation for the macroscopic condensate wavefunction:

We next split the quantum field operators into a condensate
and noncondensate part (Beliaev, 1958)

The noncondensate part describes the thermal cloud atoms.



Using this decomposition in the correlation function with
three field operators, we obtain

Taking the average reduces this to

and hence

We see this equation goes past the original GP by having
new terms related to the noncondensate field operator
The first line includes the new Hartree-Fock mean field
of the thermal cloud acting on the condensate, with density

˜ ψ 



We are now going to make some approximations, leading to
a theory developed by Zaremba, Nikuni and Griffin in 1999-
called ZNG for short. These approximations are supposed to be
good if we can use the semiclassical model of the thermal gas.
This means that thermal gas atoms of momentum p move in the
trap and the HF self-consistent mean fields, with energy

Note the potential energy U(r, t) depends only on r and t. 
This semiclassical approximation ignores the discrete 
quantum energy levels of the harmonic trap. It is only 
valid at high enough temperatures (but below Tc) such that

But this is the region mainly studied in Bose gas experiments.



Elementary excitations vs collective modes
It is very important in my discussion to keep clearly in mind
the difference between:
• Elementary excitations (quasiparticles)which determine

the thermodynamic properties of the system.
• Collective modes which involve oscillations in the

density of the elementary excitations. These include the
two-fluid hydrodynamic modes( first and second sound)

A good example to keep in mind is the air in this room.
The elementary excitations are well approximated as an
ideal gas of free atoms. In addition, we know that this
Air sustains low freqency hydrodynamic sound waves, as
predicted by the hydrodynamic equations. The sound
velocity of these collective density oscillations is given by
the usual compressibilty of an ideal gas of atoms.



To complete the ZNG theory approximations, we ignore the
anomalous correlation function
and we evaluate the three field correlation function involving
the field operators of the non-condensate thermal gas atoms
using the previously defined semiclassical model to obtain

where fi =f (pi, r, t) is the single particle distribution function
for atoms with momentum pi. Note the energy and momentum
conservation delta functions. Also that it is first order in the
interaction g and is imaginary.

I will not derive this here, but verify its correctness shortly.

˜ ψ 



If we insert these results in our exact equation for , we 
obtain

where the new imaginary term is given by

Φ(r, t)

in terms of the new source function associated with coupling
to the thermal cloud atoms: 



Kinetic equation for the dynamics of the thermal atoms
f (p, r, t ) describes the single-particle distribution for atoms of
momentum p, at position r and time t. A kinetic equation
describes how it change in time when perturbed from equilbrium:

Atoms move in a self-consistent time-dependent Hartree-
Fock potential   
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Two kinds of collision terms in the kinetic equation
Collisions between thermal atoms are 
described by

This type of collision integral reduces to the usual one for a
classical gases, where all the distribution functions satisfy f <<1.
In this case,the terms in the last square bracket reduce tof3 f4 − ff2[ ]
We note that the collision integrals are second order in the
interaction strength g (binary collisions since the gas is dilute).

Note we are taking into account of Bose statistics. In scattering,
we have the statistical factors (1+ fi) for the creation or fi for the 
destruction of an atom in state i . For Bose atoms, fi can be large.



C12 collisions
The new kind of collision term only arises when there is a
Bose condensate involves scattering between atoms in the
condensate and thermal cloud. These collisions play a
crucial in the whole theory.

wiggly lines are condensate atoms



We note that the expression for C12 collision integral in our
kinetic equation is essentially the same as the imaginary term R
we found in our generalized GP (GGP) equation, namely

This connection is not unexpected. We now show what the
precise meaning of this connection, in more physical terms.
The condensate generalized GP (GGP) equation can be rewritten 
in terms of density and velocity variables. Doing exactly the
same kind of math that we did for the GP equation, we find



  Γ12( f ,Φ) ≡ dp2πh( )3∫ C12 f ,Φ[ ]

  

µc (r r , t) = Vtrap (r r ) + gnc (r r , t) + 2g ˜ n (r r , t)

Using the relation

As a result of the C12 collisions, the conservation equation
for the condensate now has a source term Γ12 by which the
atoms from the thermal cloud can modify the local number
density of condensate atoms. All this makes sense!
To show our theory is consistent, let us return to our kinetic
equation for the thermal atoms. 
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∇ p f = C12 + C22
We now integrate over the momentum .We use the fact that
that C22 collisions do not change the total number of atoms
in the thermal cloud and hence  dr p ∫ C22[ f ,Φ] = 0
However, the C12 collisions may change the number of atoms
in the thermal cloud and hence in general

  

dr p ∫ C12[ f ,Φ]≠ 0 ∴ Γ12 ≠ 0
Integrating over the momentum, the above kinetic equation
above gives



The thermal cloud local density and velocity variables are defined as 

  ∂∂t dr p 2πh( )3 f∫ + dr p 2πh( )3∫ r p m ⋅ ∇ r f − ∇ rU ⋅ dr p 2πh( )3 ∇ p∫ f = 0+ dr p 2πh( )3∫ C12
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or This integral vanishes
Thus the conservation equation for the local thermal cloud density
has the same source term as the condensate conservation equation,
but with opposite (or + ) sign.



Adding the these two separate conservation equations, we
see that Γ12 cancels out, and we obtain the correct conservation
equation for the total density and current

where   
n = nc + ˜ n 
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Summary: ZNG coupled equations
Generalized GP equation for the condensate dynamics

Collisional coupling
(atom transfer)mean field coupling

is coupled to the kinetic equation for the thermal cloud 

C12 collisions  ⇒



Our aim is to use them to “unpack” the dynamics of trapped 
Bose gases at finite temperatures, especially on the role of the 
C12 collisions. There are two regions of interest when considering
collective oscillations with frequency ω :

Collisionless region - where the dominant effects came from the 
self-consistent mean fields. The effect of collisions are important
but are usually perturbative corrections. Defined by

Two-fluid collisional hydrodynamics- where one achieves local
equilibrium due to strong collisions ωτ <<1

ωτ >>1

These two coupled equations can be solved for the dynamics
of the condensate and the thermal cloud at finite temperatures.
Surprisingly the coupled dynamics contained in these simplified
ZNG equations is still quite subtle and complicated.



Numerical simulations of ZNG equations
in the collisionless region

Jackson and Zaremba have used Monte Carlo numerical 
simulations to solve the  ZNG kinetic equation coupled to the 
GGP equation. See Chs.11 and 12 of the GNZ book for details.

In this approach, one can simulate the precise experimental 
conditions used to excite the collective oscillations. One is not 
limited to linear response.

Agreement with data for the temperature dependence  of 
the frequency and damping of the condensate and thermal
cloud oscillations is excellent.

However, we note that while collisions are important in this
region, they are not strong enough to produce local equilibrium



condensate

thermal cloud

Initial conditions: Excite thermal cloud only

From such direct simulations of the cloud dynamics, one can
obtain the frequency and damping of the collective modes as a 
function of the temperature. This simulation was done to 
explain experiments by Dalibard group, ENS, 2002.

Jackson & Zaremba, 2002
Two examples of direct simulation of coupled dynamics



condensate

thermal cloud

Initial conditions: Excite condensate only

Jackson & Zaremba, 2002



Static thermal cloud approximation
The simplest theory which includes the thermal cloud is to
keep the dynamics of the condensate but assume that the thermal
cloud always stays in static thermal equilibrium.While
simple, this seems to often be a reasonable approximation.
We recall that, by definition, the time-independent equilbrium 
form of the distribution function is given by the requirement

Thermal equilbrium is defined as the state where scattering
in and out processes exactly balance, so that both C22= 0
and C12= 0. This condition requires that



Comment on the hydrodynamic description of the 
condensate and thermal cloud:
The preceding analysis shows that the thermal cloud
can be described using a few local macroscopic variables
(like density ñ , pressure P, velocity vn ) only under the 
condition that we have achieved local equilibrium through 
strong collisions. This is collisional hydrodyanamics.

In the collisionless region, on the other hand, the full
atom distribution function f (p,r,t) is needed to describe 
the thermal cloud. This is much more complicated.

In contrast, the “hydrodynamic” description of the 
condensate is always valid because all the atoms are in the 
same single-particle quantum state .This is specified by the 
condensate density nc and velocity vc( gradient of phase).



Using the Bose identity

one can verify that the unique solution of C22 = 0 is

C22 only vanishes if:

C12 only vanishes if:
= 0

The additional condition that C12 = 0 requires that the thermal 
cloud and condensate chemical potentials are equal.



This means that

  

U0(r) − ˜ µ 0 = gnc0(r r )

  ̃

 µ 0 = µc0 ≡ Vtrap(r r ) + gnc0(r r ) + 2g ˜ n 0(r r )
We also note that since

the static equilibrium distribution function is

However, we want to keep the dynamics of the condensate
and as a result, C12 does not vanish. Calculation easily
shows that



The collision time of a condensate atom with the thermal
cloud atoms in equilibrium is

  

εc = µc(r r ,t) = Vtrap(r r ) + gnc (r r ,t) + 2gnc0(r r )
where the condensate energy is

still involves the time-dependent condensate fluctuations. For
small deviations δnc from equilibrium, we can expand the
exponential in R0 to obtain

  

= µc0 + δnc (r r , t)

expβ[µc (r, t)− ˜ µ 0] −1 ≈ βgδnc (r,t)



The end result is that in the static thermal cloud approximation,
we have the GGP equation

where 

  

R0(r r ,t) = hβ
2τ120 gδnc (r r ,t)

We see that we have derived a closed equation for condensate
oscillations at finite temperature that now includes damping
from the coupling to a static thermal cloud.



I will now turn to the opposite limit where the interactions 
are strong enough to produce local equilibrium in the thermal 
gas. 

In this limit, the thermal gas can be described by a few local 
variables, just as in ordinary fluid dynamics. However, the 
new aspect is that these variables are coupled to those 
describing the condensate degree of freedom.This leads to
the two-fluid hydrodynamics first discussed for superfluid 
Helium by Landau (1941).

Two-fluid collisional hydrodynamic region



How do we make the collision time small?
For a gas above TBEC, , collisions between the atoms in 
the thermal cloud of density            give rise to the well
known relaxation time:

However, when a Bose condensate forms, it turns out that 
it is collsions between atoms in the high density localized
condensate and the spread-out low density thermal cloud

are most important. The result is: 

σ = 8πa2, where a is the s-wave scattering length for Bosons.˜ n 0(r)

Need large value of the s-wave scattering length a



Condensate vs thermal cloud density profiles
in a harmonic trap: an example

This is for T≈ 0.75Tc. The high density of condensate
atoms in the center of the trap potential means that the
C12 collisions always dominate over the C22 collisions.



Bose Distribution function in local equilibrium

All the quantities temperature, local velocity, chemicalpotential and the effective HF potential now depend onthe position r in the trap and the time t. This is what local hydrodynamic equilibrium means.
For

C22[ ˜ f ,Φ] = 0

Local equilibrium
distribution

for any value of Φ(r, t)



We note that this source term only vanishes if the term in the
square bracket in the exponential vanishes.

We now return to our kinetic equation and take momentum
moments , like we did earlier  in deriving the continuity equation 
for the thermal cloud density.

Using this local equilibrium distribution, we find

We emphasize that this local equilibrium form is imposed by
strong collisions such that C22 = 0, even though there is no
explicit dependence on these collisions.

Γ12



The thermal cloud local density and velocity variables are defined as 

  ∂∂t dr p 2πh( )3 f∫ + dr p 2πh( )3∫ r p m ⋅ ∇ r f − ∇ rU ⋅ dr p 2πh( )3 ∇ p∫ f = 0+ dr p 2πh( )3∫ C12
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2πh( )3∫ ∇ p f (r r , r p , t) = Γ12(r r , t)
or This integral vanishes
Let us write the kinetic equation in the symbolic form

ˆ L ˜ f = C12[ ˜ f ]



Multiplying by p and integrate, after some work we find

For example, the first term in the kinetic equation gives
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This illustrates the manipulations that give the above result.
The kinetic pressure term is defined as



Finally, we multiply by p2 and integrate, giving



In local equilibrium, the ZNG equations reduce toCONDENSATE
THERMAL CLOUD
where one finds  



Summary of what we have accomplished.
Assuming that the thermal cloud is described by the local
equilibrium Bose distribution, we have derived a set of coupled 
hydrodynamic equations for both the condensate and the thermal 
cloud. These equations are a closed set for the macroscopic 
variables for both components. All reference to the thermal atom 
distribution function has disappeared. We are left with local 
densities, velocities, etc. that depend on r and t.

We do not show any details, but one can prove that this set
of coupled equations are precisely equivalent to the Landau
two-fluid hydrodynamic equations introduced in Lecture 1. Landau 
formulated his theory using a different set of variables, namely 
density and entropy fluctuations. We need to go from our 
microscopic theory given in terms of the condensate and thermal 
cloud density fluctuations to the thermodynamic variables that 
Landau used. 



Landau two-fluid equations - from Lecture 1

These equations do not look like the hydrodynamic equations
we havederived. But they can be proven to be equivalent!



Coupled equations for a uniform superfluid and normal fluid
velocity potentials:
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Assuming plane wave solutions, these two coupled equations
reduce to two algebraic equations for the amplitudes φc and φn
which can be easily solved for the first and second sound
velocities. These result are precisely the same that we would
get from the Landau equations.



Hydrodynamic modes in dilute weakly interacting
Bose gas -uniform gas

It turns out that the hydrodynamic normal modes in a dilute
gas are largely uncoupled oscillations of the condensate and
the thermal cloud components. These are the natural extensions
of the pure condensate modes at T = 0 and sound waves in a
normal Bose gas above Tc

These velocities only depend on the equilbrium pressure, thermal atom density and the condensate density , all at temperature T.



In our trapped Bose gas, of course, the elementary excitations
that must be used to calculate the thermodynamic properties
in the Landau two-fluid equations are not the phonon-roton 
excitations used for liquid 4He. These functions are those of a
Bose gas of atoms with the Hartree-Fock self-consistent
energy spectrum. In this dilute gas, the superfluid and normal
fluid correspond to the condensate and the thermal cloud,
respectively.

The Landau two fluid equations are now understood to be
always correct for superfluid hydrodynamics, in liquid He,
Bose gases and Fermi gases. This statement is equivalent
to the statement that the equations of classical fluid dynamics
are generic, valid for all normal fluids.



Our explicit derivation of Landau hydrodynamics is important
conceptually since we started with a Bose condensate. It is the
basis of our whole discussion. This is important since Landau in
his derivation in 1941 did not explicitly use a Bose condensate,
giving the incorrect impression that it was not essential. It is!!

Our derivation for a dilute Bose gas is also important since
it gives one confidence that these two-fluid hydrodynamic
equations are correct, even in strongly interacting systems
where it is difficult to carry out an explicit proof. For example,
they are expected to be valid in a Fermi gas superfluid when
the interactions become infinitely strong.



Can we observe first and second sound in trapped Bose gases?
It may be possible but it will be difficult because we cannot
make the s-wave interaction large using a Feshbach 
resonance , because of large three-body losses which destroy
the condensate. This might be overcome by doing the
experiments very fast, before such processes can occur.

One possibility is to use pulse propagation along the axis of
a long cigar-shaped traps, with a very weak axial trapping
frequency. This makes it easier to satisfy the key condition

τ << T⇒ωτ <<1
with the collective mode frequency ω being of the order of the
small axial trap frequency ω0.
A much more promising system is a Fermi superfluid gas.


