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Ultracold fermions

A simple argument:  
• Condensation is only possible for BOSONS.
• FERMIONS behave differently, due to Pauli. 

7Li
(BEC)

6Li
(Fermi see)

(Salomon, ENS, 2001)



(Rice, 2001)

Observing quantum statistics

BEC Degenerate Fermi gas



if                                      one can use semiclassical approximation 1]/))(2/exp[( 1),( 2 +−+
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Same dependence as 
BEC critical temperature3/194.0 NTk hocB ωh=

Ultracold fermions

Ideal fermions in a trap 

step function

One gets



Ultracold fermions

3/194.0 NTkTk hocBB ωh=<< 3/1)6( NETkTk hoFFBB ωh==<<
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Ultracold fermions

Density profile



Ultracold fermions

Another consequence of Pauli exclusion principle:

Fermions of the same atomic species and in the 
same spin state do not  interact in s-wave scattering !!

Just a (almost) free degenerate Fermi gas…



Ultracold fermions

Another consequence of Pauli exclusion principle:

Fermions of the same atomic species and in the 
same spin state do not  interact in s-wave scattering !!

Just a (almost) free degenerate Fermi gas…

BUT what about a mixture of two spin states or two species ?� s-wave scattering  is possible and dominates at low temperature� s-wave scattering length can be tuned thanks to Feshbach resonances



Ultracold fermions

Mixture of two spin states or two species 

∫ ↓↑
+
↓

+
↑ ΨΨΨΨ= )(ˆ)(ˆ)(ˆ)(ˆˆ int rrrrrdgH mag /4 2hπ=with

a<0 atoms can form bound pairs (bosons)  and undergo BCS superfluidity



Pairing between spin-up and -down atoms in momentum space (Cooper pairs).

Order parameter characterizing the long range order of two-body density matrix. 

Quasi-particle excitation spectrum has a gap:

BCS critical temperature :

BCS  theory

)(ˆ)(ˆ)( rrr ↓↑ ΨΨ=∆ 222 ])2/[)( µε −+∆= mpp gap−= akTT FFc 2exp28.0 π

Ultracold fermions1|| <<akF0<a

Note: this can be very small 
if kF|a| is small !

Note: this prefactor contains Gorkov and Melik-Barkhudarov 
corrections to BCS (renormalization of scattering length due 
to screening effects) 

Same physics of weak coupling superconductors!

½ of the energy 
required to 
break a pair 
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Mixture of two spin states or two species 

∫ ↓↑
+
↓

+
↑ ΨΨΨΨ= )(ˆ)(ˆ)(ˆ)(ˆˆ int rrrrrdgH mag /4 2hπ=with

a<0 atoms can form bound pairs (bosons)  and undergo BCS superfluidity

a>0 atoms can form bound molecules (bosons) and undergo BEC.



BEC of molecules

Ultracold fermions0>a
When the scattering length a is positive, the interaction can produce weakly
bound molecules (bosons) of size a.  

If  kF|a| is small, the size of molecules is much smaller than the average distance 
between them (gas of bosonic dimers).

By solving the two-body scattering problem one finds the molecular binding energy:

At low T, molecules form a BEC. The critical temperature for a gas of bosons of 
mass 2m (molecules) at  density n is directly related to value  of Fermi energy of 
fermions of mass m at the same density.
In a uniform gas:                                  In a harmonic trap: 

Critical temperature for superfluidity is much higher in BEC than in BCS side 
where it is exponentially small.

1|| <<akF
22maE h−=FBEC TT 2.0= FBEC TT 5.0=
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Mixture of two spin states or two species 

∫ ↓↑
+
↓

+
↑ ΨΨΨΨ= )(ˆ)(ˆ)(ˆ)(ˆˆ int rrrrrdgH mag /4 2hπ=with

a<0 atoms can form bound pairs (bosons)  and undergo BCS superfluidity

a>0 atoms can form bound molecules (bosons) and undergo BEC.

In both cases one gets deep modifications of many-body wave function. 
Ideal Fermi gas is no longer proper starting point. 

No perturbative theories
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Mixture of two spin states or two species 

∫ ↓↑
+
↓

+
↑ ΨΨΨΨ= )(ˆ)(ˆ)(ˆ)(ˆˆ int rrrrrdgH mag /4 2hπ=with

a<0 atoms can form bound pairs (bosons)  and undergo BCS superfluidity

a>0 atoms can form bound molecules (bosons) and undergo BEC.

The scattering length can be tuned at 
will when the atomic species exhibits 
Feshbach resonances. 

BCS-BEC crossover 



BCSBCS--BEC BEC crossovercrossover
(in a 2-component Fermi gases)

BEC Unitarity BCS



degenerate 
Fermi gas

molecular 
BEC

FermionsBosons

na3=0.04

na3=0.28

na3= kF|a| = ∞
kF|a|=6 

BCS-BEC crossover
6Li atoms @ Innsbruck

Ultracold fermions



Experiments

…and many more after 2005. 
Also imbalanced spin mixtures (different populations). 
Also mixtures of different atoms: 40K-87Rb (Florence), 6Li-23Na (MIT), …

Quantized vortices in 
the BCS-BEC 
crossover (MIT 2005)

Ultracold fermions



Important efforts in recent few years to provide improved many-body 
schemes (Holland, Griffin, Timmermans, Strinati ….), including 
numerical quantum Monte Carlo approaches (Carlson, Giorgini,…)

First theoretical approach developed by Leggett (1980).  
Nozieres and Schmitt-Rink (1985)  generalized the gap equation of  BCS theory to 
include the whole resonance region.

Theory predicts (Randeria,1993):

- critical temperature and equation of 
state as a function of   dimensionless 
the parameter

- formation of molecules with energy 
on the BEC side  

- BEC of molecules interacting with 
scattering length 
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Theory of the BCS-BEC crossover



At unitarity the system is strongly correlated but its properties do not depend 
on the value of scattering length a (not even on the sign of a)!

1>>akFUnitary regime when 

The typical length scale of interaction becomes much larger than the size 
of the gas itself. It disappears from the description of the system. 

All lengths disappear from the calculation of energy, chemical 
potential, thermodynamic functions, etc., except the interparticle 
distance, which is fixed by the total density of the gas n. 

Universality

Theory of the BCS-BEC crossover



1>>akFUnitary regime when 

Universality All lengths disappear from the calculation of energy, chemical 
potential, thermodynamic functions, etc., except the interparticle 
distance, which is fixed by the total density of the gas n. 

Example:
The equation of state of a unitary uniform gas at T=0 must exhibit the same 
density dependence as the ideal Fermi gas (dimensionality arguments rule out 
different dependences). Thus 

( ) 3/222 62)1( nm πβµ h+= 00≠
=

β
β

with
Ideal Fermi gas

Fermi gas at unitarity

Many-body calculations are needed to determine value of β.

One finds: β≈−0.6 (it is negative, reflecting attractive role of the interaction).

The equation of state can be used to determine density profiles, release energy 
and collective frequencies in Thomas-Fermi approximation.

Theory of the BCS-BEC crossover



Mean-field theory of the BCS-BEC crossover

Uniform gas at T=0.
Many-body Hamiltonian written in terms of fermionic operators ↓↑

+
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Approximation: include the interaction only in pairing correlations, treated at 
mean-field level. Ignore direct (Hartree) interaction terms proportional to the 
averages 
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↓ ΨΨ ˆˆ these would give divergent terms at unitarity 

One gets the BCS Hamiltonian 
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Mean-field theory of the BCS-BEC crossover

[ ]{ }..)(ˆ)(ˆ)2/1()(ˆ)(ˆ)()(ˆ2)(ˆˆ , 22 cHdmdHBCS +ΨΨ−ΨΨ∆−Ψ −∇−Ψ= +
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Crucial point: this Hamiltonian can be put in diagonal form by replacing 
particles with quasi-particles (Bogoliubov transformations ) !

∑
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+
↓

+
↑

+=Ψ

+=Ψ i iiiii iiii vu vu ]ˆ)(ˆ)([)(ˆ ]ˆ)(ˆ)([)(ˆ ** αβ

βα rrr rrr )ˆˆˆˆ()(ˆ 0 iii iiiBCS NEH ββααεµ ++ ++−= ∑ a gas of independent 
quasi-particles

The quasi-particle operators obey the anti-commutation rules { } { } ijjiji δββαα == ++ ˆ,ˆˆ,ˆ
The quasiparticle amplitudes obey ijjiji vvuud δ=+∫ )]()()()([ ** rrrrr



Mean-field theory of the BCS-BEC crossover

∑
∑

+
↓
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The diagonalization of the Hamiltonian gives the equations for the quasi-
particle amplitudes. In general, including the case of a Fermi gas in an 
external potential, these equations have the form  = −∆

∆ )( )()( )()()( )()( 0*0 rrrrrr rr iiiii vuvuHH
ε Bogoliubov – de Gennes

equations

with µ−+∇−= )(2)( 220 rr extVmH h
The order parameter can be obtained by means of a self-consistent procedure.
A proper regularization of the interaction is needed (see Giorgini et al. RMP 2008 
for details). 



Mean-field theory of the BCS-BEC crossover= −∆
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ε

Bogoliubov – de Gennes equations

µ−+∇−= )(2)( 220 rr extVmH h
Note: remarkable similarity with Bogoliubov 
equations for excitations (quasi-particles) in BECs= −Ψ−

Ψ )( )()( )()()()( 02*0 200 rrrrrrr iiiii vuvuHg gH ε 20220 )(2)(2)( rrr Ψ+−+∇−= gVmH ext µh
Fermions

Bosons

jjextjj jjextjj ugvgnVmv vgugnVmu 2*0022 20022 22 22
Ψ+ +−+∇−=−

Ψ+ +−+∇−=

µω

µω hh hhNote: in lecture #2 we wrote the same eqs in this form:  



Mean-field theory of the BCS-BEC crossover

Fermions Bosonsvs.

Bogoliubov equations for BECs and Bogoliubov-de Gennes for fermions are 
two implementations of the same idea: Bogoliubov transformation, i.e. , 
diagonalization of  the many-body Hamiltonian by replacing particle 
operators by quasi-particle operators.  

one of the key concepts 
in many-body theories



Mean-field theory of the BCS-BEC crossover

Fermions Bosonsvs.

Bogoliubov equations for BECs and Bogoliubov-de Gennes for fermions are 
two implementations of the same idea: Bogoliubov transformation, i.e. , 
diagonalization of  the many-body Hamiltonian by replacing particle 
operators by quasi-particle operators.  

Important difference:

Due to macroscopic occupation of a single state, in BEC the order parameter is 
obtained expanding the Hamiltonian in                where      . 
At zero-order  one has the GP equation for            .
At first-order one gets the Bogoliubov equations for bosonic excitations.

Conversely, in the BCS-BEC theory for fermions, there is no zero-order. The 
Bogoliubov-de Gennes equations give the order parameter itself, together with 
all fermionic excitations (but no bosonic excitations, such as phonons…).  The 
ground state is the vacuum of quasi-particles. 

)(ˆ)()(ˆ 0 rrr Ψ+Ψ=Ψ δ)(ˆ rΨδ )(0 rΨ



Mean-field theory of the BCS-BEC crossover= −∆
∆ )( )()( )()()( )()( 0*0 rrrrrr rr iiiii vuvuHH

ε

Bogoliubov – de Gennes equations

µ−+∇−= )(2)( 220 rr extVmH hFermions

The mean-field theory based on BdG equation

gives the correct limit of free fermions in external potentials for a=0-

gives the correct GP equation for a BEC of molecules of mass 2m for a=0+

gives a smooth crossover from BCS to BEC, including unitarity.

it is accurate enough for many purposes.

It is misses important corrections to the ideal Fermi gas for small and negative a.

It gives the wrong scattering length for molecule-molecule interaction.  



= −∆
∆ )( )()( )()()( )()( 0*0 rrrrrr rr iiiii vuvuHH

ε

Bogoliubov – de Gennes equations

µ−+∇−= )(2)( 220 rr extVmH hFermions

An application: fermions in a 1D optical lattice

order parameter

density

These equations must be solved numerically by means of an iterative 
procedure in order to ensure self-consistency. 



= −∆
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Bogoliubov – de Gennes equations

µ−+∇−= )(2)( 220 rr extVmH hFermions

An application: fermions in a 1D optical lattice

order parameter

density

Caveat: a regularization procedure must be used to cure ultraviolet divergence 
(pseudo-potential, cut-off energy)  as discussed by Randeria and Leggett.  
See also: G. Bruun et al., Eur. Phys. J D 7, 433 (1999), A. Bulgac and Y. Yu, PRL 
88, 042504 (2002).
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ε

Bogoliubov – de Gennes equations

µ−+∇−= )(2)( 220 rr extVmH hFermions

An application: fermions in a 1D optical lattice

In a lattice, the external potential is periodic of period d and one can use the 
Bloch wave decomposition

functions of period d

Once BdG equations are solved, one can calculate the energy density



chemical potential

inverse compressibility

effective mass

sound velocity

Key quantities 
for the 
characterization 
of the collective 
properties of the 
superfluid

An application: fermions in a 1D optical lattice

From the energy density one can then calculate

I will show some of the results obtained in:
Equation of state and effective mass of the unitary  Fermi gas in a 
1D periodic potential  [Phys. Rev. A 78, 063619 (2008)].



Results: compressibility and effective mass



Results: compressibility and effective mass

Two-body
results by
Orso et al.,
PRL  95, 060402
(2005)

when  EF << ER :

The lattice favors the formation of 
molecules (bosons). 

The interparticle distance becomes 
larger than the molecular size. 

In this limit, the BdG equations 
describe a BEC of molecules. 

The chemical potential becomes linear 
in density. 

s=5

s=0



Results: compressibility and effective mass

when  EF << ER :

The lattice favors the formation of 
molecules (bosons). 

The interparticle distance becomes 
larger than the molecular size. 

In this limit, the BdG equations 
describe a BEC of molecules. 

The chemical potential becomes linear 
in density. 

The system is highly compressible. 

The effective mass approaches the 
solution of the two-body problem. 

The effects of the lattice are larger 
than for bosons!

Two-body
results by
Orso et al.,
PRL  95, 060402
(2005)



Results: compressibility and effective mass

when  EF >> ER :

Both quantities approach their 
values for a uniform gas.

Analytic expansions in the small 
parameter (sER/EF)



Results: compressibility and effective mass

when  EF ~ ER :

Both quantities have a maximum, 
caused by the band structure of 
the quasiparticle spectrum.



Sound velocity

Significant reduction of sound velocity the by lattice !



Sound velocity

10

5

0
86420

This was the experiment with bosons
(MIT, 1997).

One might do the same with fermions 
with and without optical lattice. 



aspect ratio = 1ħω/ER = 0.01
N=5×105

s=5

Density profile of a trapped gas

From the results for µ(n) and using a local density approximation, we 
find the density profile of the gas in the harmonic trap + 1D lattice

Thomas-Fermi for fermions

Bose-like
TF profile !



Mean-field theory of the BCS-BEC crossover= −∆
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ε

Bogoliubov – de Gennes equations

µ−+∇−= )(2)( 220 rr extVmH hFermions

We have just seen an example of BdG calculations: 
Fermions at unitarity in an optical lattice.

Similar calculations:

Quantized vortex in the BCS-BEC crossover
(Sensarma, Randeria,Ho, PRL 2006).



Mean-field theory of the BCS-BEC crossover= −∆
∆ )( )()( )()()( )()( 0*0 rrrrrr rr iiiii vuvuHH

ε

Bogoliubov – de Gennes equations

We have just seen an example of BdG calculations: 
Fermions at unitarity in an optical lattice.

Similar calculations:

Dark soliton in the BCS-BEC crossover
(Trento, PRA 2007).



Mean-field theory of the BCS-BEC crossover= −∆
∆ )( )()( )()()( )()( 0*0 rrrrrr rr iiiii vuvuHH

ε

Bogoliubov – de Gennes equations

We have just seen an example of BdG calculations: 
Fermions at unitarity in an optical lattice.

More recently:

Critical velocity of superfluid flow through single 
barrier and periodic potentials
(Trento, just submitted).



Mean-field theory of trapped 
atomic cold gases
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