BECs in optical lattices



1D lattice + harmonic trap

A periodic potential can be generated by two counter-propagating laser beams

which produce a standing wave of the form E(z,t) = Eo i@ sin(gz) + c.c.

The time averaged effective field ~ V,,,(2) = _(1/2)0'(0))<E2(2J)>

takes the form A
V,.(z) = —a(w)E"sin"(qz)

where Q(&) = dipole polarizability.

(natural extension to 2D and 3D periodic potentials)
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|deal crystal-like systems:

** no impurities

** no defects

** bosons, fermions, or both together.

+* possibility of tuning depth of the potential,
lattice spacing, atom-atom interaction,
dimensionality.
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New physics in the presence of periodic potentials.

-Without interaction:
Interference in momentum distribution, Bloch oscillations, etc.

- With interactions:
Josephson oscillations, dynamic instabilities, superfluid-Mott insulator transition

and other quantum phases (including spin degrees of freedom).

Sort of “Solid state physics” revisited !



BEC in 1D optical lattice

Important length scale: recoil energy Bragg wavevector
/ qds — n/d
= n’q; _ her
" 2m  2md?

The external potential can be written as \
— e lattice spacin
Vopt(z) =sE sin“(qz) pacing
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BEC in 1D optical lattice

V,(2) = sE, sin’(gz)

Th
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Note
. . Width of the
If noninteracting: wavefunction

in a lattice site



BEC in 1D optical lattice

(z) =sE sin’(gz)

opt

W(iz)=> f(z-Id)

Fourier transform of
Wannier function

2
Momentum distribution |2(p) = ‘LP(P)‘ /

where W(p) = (277%)_1/2 Zz J‘dze—ipz/hf(z —ld) = Jco(p)zle—ildp

Number of occupied wells

If s>>1 5 /d/
o Sin(Nopd 20)

n —

()= 715 (P) sin(pd /2h)

If noninteracting:

1/2
g

Jo(P) =i exp(= p’o”/2n’)




BEC in 1D optical lattice

sin®(N,, pd / 2h) The momentum distribution is characterized
sinz( pd /2h) by series of peaks located at

n(p) = f5 (P)

12 p =2nhn/d =2nhq, =2np
£(p) = #exp(-pzaz /21%) S

Each peak has relative weight i ﬂ i
exp(—4rrn’o’ /d?)
and relative width \
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trapped gas 3 2 1 0 1 2 3



BEC in 1D optical lattice

Free expansion of BEC out of a lattice
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BEC in 1D optical lattice

1 Free expansion of BEC out of a lattice
~ l/l 1/0 \\\ .
- : in 3D (I.Bloch et al., 2002)
S was -
: 1z /N |
:———"./:/|\A N R A/\J | \/\A _— AA~
-3 -2 -1 0 1 2 3
P/l py

coherent matter wave diffraction
from a lattice made of light
instead of
coherent light diffraction I
from a lattice made of matter .




BEC in 1D optical lattice

. Note:
- 7 Interactions and harmonic trapping
i ‘ | do not change significantly the
— /'I 1/0 ] 1 1
N _ mechanism of the expansion and

i i the peak separation provided
| S AN wa -
- / Sz / ] ] U< Er
————— '.'/./|\A . A/\J ! \/\A — AZX\ R : :
3 2 1 0 1 2 3 They instead affect the occupation

P/ Ds number of atoms in each well

and hence the shape of the

coherent matter wave diffraction density distribution.

from a lattice made of light

instead of One can use GP theory (within

certain limits of applicability)

coherent light diffraction I
from a lattice made of matter .



Bloch waves and bands

A uniform system is
translationally invariant

A periodic external
potential breaks the
translational invariance

momentum is a good
guantum number

momentum is NOT a
good quantum number

VAWWAAAANUAANUUAAAN

However, one can always write wavefunctions (and order parameter) in this form:

W, (2)=¢"""¢,(2)

Bloch waves

(as for electrons in a solid)

where @¢.(z) has the same periodicity of the lattice: @,(z) =@,(z+d)

P is the quasi-momentum!
It coincides with true momentum only in the limit s> 0



Bloch waves and bands

For a BEC in an 1D optical lattice, one can use the Bloch wave decomposition

W, (2) =P, (2)

for the order parameter solution of the GP equation.

{_h : +Vopt(z)+gwp(z)2}LIJP(Z):/JLPP(Z)

md?
>

n*(d PY
_%(Z_l%j @p(2)+

glg, " +V,,(2)|$.(2) = L(P)@,(2)

P=0 - BEC at rest in the lattice.
P#Z0 - BEC moving in the lattice.



Bloch waves and bands

_h—z(i_igj @p(2)+

gg, ) +V, (2| 4.(2) = u(P)@,(2)

2m\ dz

Since all functions are periodic with period d, one can solve this equation in a
single lattice site.

10 T T T

The energy of the solutions will be a function
of the quasi-momentum P, which can be oF
calculated in the first Brillouin zone: o
O
-p;,<P<p,, p,=hld 3
©
o
)
Bloch bands | === >
c
)

e(p) = EPI=EO)
B N 0 ]

from the solutions of GP eq. | P/pg



Bloch waves and bands

'h_(i"' gj o, <z>+[g\¢P<z>\2 Vo (2)

m\ d- @p(2) = U(P)P,(2)

average density

Lowest Bloch band (gn=0.4Ey)
Without lattice: e =10 '

£.(P)=P?/2m &
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Bloch waves and bands

_h_z(i_
2m\ dz

l%) @p(2)+ [g‘¢P(Z)‘2 + Vopr(z)

@p(2) = U(P)P,(2)

Without lattice: 0.4

With lattice, in the small P limit:

At small P, BEC flows in the lattice as it
were a fluid of particle with mass m*
with current density

average density

Lowest Bloch band (gn=0.4Ey)

1
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£.(P)=P?/2m
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g(P)=P*/2m’
4

effective mass

J=nP/m
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Bloch waves and bands

Pld
2m\ dz

l%) @p(2)+ [g‘¢P(Z)‘2 + Vopr(z)

@p(2) = U(P)P,(2)

m*/m

0.4

average density

Lowest Bloch band (gn=0.4Ey)

1
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g(P)=P*/2m

S

m* increases exponentially with s,
for large s !
(lattice acts against flow)

P/PR




Bloch waves and bands

2m\ dz

'h_(i"' gj o, <z>+[g\¢P<z>\2 Vo (2)

@p(2) = U(P)P,(2)

Large s: tight-binding limit T

average density

Lowest Bloch band (gn=0.4Ey)

E(P) = 2/5J sin”(Pd / 2#h)

035 F o

P |
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e

S,

hZ

= tunnelling energy

* 42
md

In this regime the flow is dominated
by macroscopic tunnelling between o1 |

lattice sites.
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Bloch waves and bands

W (d P ’ 2
_%(E_l%j ¢P(z)+[g‘¢P(z)‘ +V,,(2)

@p(2) = U(P)P,(2)

average density

0.4

Important remark:

GP equation is nonlinear. Differently from 0.5 |

Schrodinger equation, it admits nonlinear

stationary states with P larger than pg. a8

0.25 |

0.1
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Lowest Bloch band (gn=0.4Ey)
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Bloch waves and bands

hZ
2m

@p(2) = U(P)P,(2)

d PY i
(E_ZEJ ¢P(Z)+[g‘¢P(z)‘ +V,,(2)

Lowest Bloch band (gn=10Ey)

30

Important remark:

GP equation is nonlinear. Differently from
Schrddinger equation, it admits nonlinear
stationary states with P larger than pg.
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Bloch waves and bands

W (d P ’ 2
_%(E_l%j ¢P(z)+[g‘¢P(z)‘ +V,,(2)

@p(2) = U(P)P,(2)

Important remark:
GP equation is nonlinear. Differently from
Schrddinger equation, it admits nonlinear

PHYSICAL REVIEW A 67, 053613 (2003)
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15k HUD=8EU . 15 HUG=EE1I _
V=08E, | | V=4E

stationary states with P larger than pg. E ,,E
| | a
HH 1 ﬁﬁ
=10 S0
. ﬁ ] 3
if 2gn > sk : g
q | =
Swallaw tails
3
Machholm et al., PRA 67, 053613 (2003). e e s S A e 4
d 24 ; d d d ) 2 d

FIG. 1. Energy per particle as a function of wave number for the
owest bands. The results are obfained from numerical calculations
iased on wave function (6), as described m Sec. II B.



Bloch waves and bands

@p(2) = U(P)P,(2)

W (d P ’ 2
_%(E_l%j ¢P(z)+[g‘¢P(z)‘ +V,,(2)

Important remark:
GP equation is nonlinear. Differently from

Schrddinger equation, it admits nonlinear
stationary states with P larger than pg.

: Other effects of nonlinearity:
IT2gn > &g Solitons (bright, dark, gray,...)

Swallaw tails



Excitations of a BEC in a lattice

Excitations in the linear (small amplitude) regime: Bogoliubov quasiparticles.

h2
ha)]”] = [_Mmz +Vexz _ﬂ+2gnoju]’ +gLIJ02vj

2m ext

h° <2
—hwy, = [ — O +V ,u+2gnojvj+gLPo u,

with
Wo(r,0) = e W) +u, (e +vi(r)e'™ [ = [ W (r) + OW, ()]

IVW\MNWV UW\[WUW\{V\/\/\; In a periodic potential - Bloch waves
Wo(z,0) =e " " [ @, (2) + 0, (2,1)]
with 5¢P (z,1) = Z u,, ]( )el(qz Wyp 1) 4 quj (Z)e—i(qz—wqp,jt) ]



Excitations of a BEC in a lattice

Excitations in the linear (small amplitude) regime: Bogoliubov quasiparticles.

h2
ha)]”] = [_Mmz +Vexz _ﬂ+2gnoju]’ +gLIJ02vj

/ 8
—ha)jvj :[_2}” 0 e _ﬂ+2gnojvj +gL|J02uj

with
Wor,0) = e [ Wy () +u, (e +vi(r)e ] = e[ W, (1) + 3%, (1)]

{VW\M/WNV UW\[WUW\M/\/\; In a periodic potential - Bloch waves

Wo(z,0)=e ™D e [$,(2) + 88, (2,0)]

with 5 (Z’ t) = [ qu’j (Z)ei(qZ—qu,jf) + V;P’j (Z)e—l'(QZ—a)qP’jl) ]

guasi-momentum _ _
of the condensate quasi-momentum band index

of the quasiparticle



Excitations of a BEC in a lattice

2
ha)]”] :[_fmmz +Vexz _ﬂ+2gnoju]’ +gLIJ02vj

/ "
—ha)jvj [MD2+VM /J+2gnojvj+gw02uj

W (z,t)=e "™ @, (2)+ 0@, (2,1)]
0y (2:1) = Xl (T vy (]



Excitations of a BEC in a lattice

2
ha)]”] :[_fmmz +Vexz _ﬂ+2gnoju]’ +gLIJ02vj
h2 ) %2
_ha)jvj %D +V,, —HUt2gn, vj+gL|Jo U, \

W (z,t)=e "™ @, (2)+ 0@, (2,1)]
5,50 = Dl (2 2)e Wy, ()]

Including transverse radial trapping:

— (qz=Wyp ; 41) - —i(gz=@Wp ;1)
5¢P(r9 ZD t) - Z[qu’j’n(Z)el ! i +qu7j,n(Z)e e i ]

9.7

radial quantum number (number of radial nodes)




Excitations of a BEC in a lattice

Example: no lattice (P=0, only g and n)

1

Lowest branch:
axial Bogoliubov excitation
with no radial nodes (n=0)




Excitations of a BEC in a lattice

Example: no lattice (P=0, only g and n)

First excited radial branch:
axial Bogoliubov excitation
with one radial node.




Excitations of a BEC in a lattice

Example: no lattice (P=0, only g and n)

Second excited radial branch:
axial Bogoliubov excitation
with two radial nodes.

... and so on




Example: no lattice (P=0, only g and n)

hq=0

Excitations of a BEC in a lattice

1

N
5 Radial breathing mode:
§ purely compressional excitation
W=2Wy,,

|

g
8(1)'\
~~—



Excitations of a BEC in a lattice

Example: no lattice (P=0, only g and n)

Longitudinal Bogoliubov phonon:
small g (g<<¢&1), long wavelength.
w=c(, with ¢ sound velocity.




Excitations of a BEC in a lattice

Spectroscopic measurements by means of

light (Bragg) scattering. Measure of the total Multi-branch Bogoliubov spectrum
momentum transferred to a BEC. Resonant
response at the Bogoliubov frequencies. 21 PO
I
GGDGOS o°
0.09} o0
o r""’{i’ .:;.G
0.08} expt GP theory -
1 __,H'(G.D’f q? 5'1
PR »>
{Ei D ___HHGFE’B,E;@JGUW :
d g0 el '\ expt (peak position)
P G |
0 P GP theory
0 2 1 4
k(pm’)

J.Steinhauer, N.Katz, R.Ozeri, N.Davidson, C.Tozzo, F.Dalfovo, PRL 90, 060404 (2003)



Excitations of a BEC in a lattice

337
Example: no lattice (P=0, no j, only g and n)

25..

z 7
/‘l\ 3§ )
| :

i 2 ’ 4 5 ¢
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Excitations of a BEC in a lattice

In a lattice + transverse trap

1

Excitation spectrum of a BEC at
rest (P=0) in a lattice with s=5.
Lowest two Bloch bands, 20 radial
branches.




Excitations of a BEC in a lattice

In a lattice + transverse trap

1

Excitation spectrum of a BEC at
rest (P=0) in a lattice with s=5.
Lowest two Bloch bands, 20 radial
branches.




Excitations of a BEC in a lattice

In a lattice + transverse trap

1

longitudinal
phonon
w=cq

Excitation spectrum of a BEC at
rest (P=0) in a lattice with s=5.
Lowest two Bloch bands, 20 radial
branches.




Excitations of a BEC in a lattice

In a lattice + transverse trap

1

Bogoliubov sound
velocity of the lowest
phononic branch vs. the

e dicti longitudinal
aila ytlf _ylalge iction ohonon
C_(Km ) w=c(q
I R . .
e '-_ ‘ Excitation spectrum of a BEC at
= | rest (P=0) in a lattice with s=5.
1 - Lowest two Bloch bands, 20 radial
branches.




Excitations of a BEC in a lattice

04 \W/\\%/

In a lattice + transverse trap

PZz0 - BEC moving in the lattice

The Bogoliubov equations give the
excitations on top of the moving BEC

Remember:

Re(h

q
Z
&

-
2 04 /

P : quasi-momentum of the condensate
hq : quasi-momentum of the excitation

gg=17/d : Bragg wavevector

I

D)

Real part of the excitation spectrum
for P=0,0.25,0.5,0.55,0.75,1 pg.
Lowest band only.



Excitations of a BEC in a lattice

Wv/ﬂﬁ

t ...m..m....ﬂ....._..& %

tra

P=0
BEC at rest

+ fransverse

In a lattice

\ (@

tion spectrum
1 Pg,

ita

Real part of the exc

,0.75

for(P=0,0125,0.5,0.55

Lowest band only.




Excitations of a BEC in a lattice

In a lattice + transverse trap My
PZ0 4%

BEC moving 2 %’f\% \Y
é 0.4 \

-
Note: Doppler effect on sound speed \/ﬂ\
measured in the lattice frame. 0 =
-

DA&S@]

-1-0

=g

- (|
ag §
o=1
3 @
2 S |

Real part of the excitation spectrum
for P=0J0.25]0.5,0.55,0.75,1 Pg.
Lowest band only.




Excitations of a BEC in a lattice

In a lattice + transverse trap o Y"’/ /
Coupling between
propagating and -

v .

b -04

: //C-I:\\ :\-. ¥ \ Ty
= ~_ N [
2 04 \7/ -

>

Complex eigenfrequencies

2220

)

Real part of the excitation spectrum
for P=0,0.25,0.5)0.55]0.75,1 Pg.
Lowest band only.




Excitations of a BEC in a lattice

naattcem:otzri%% N 0 \//%
2 NS / ENN A

(h

Sz

Re(ho / E,)

7
S
.>>/”¢ LA
£| -"%E“; |

- W

«
—

/E

=l

imaginary g

IIm(

0.4
Phonon-antiphonon resonance = a conjugate 002
pair of complex frequencies appears. q4/qg
= resonance condition for two particles

_ . Real part of the excitation spectrum
decaying into two different Bloch states P P

for P=0,0.25,0.5,0.55,0.75,1 pg.
Lowest band only.



Energetic and dynamical instability

» Stationary solution + fluctuations:

L'l — ’{"‘D —|— { I‘; )
i L | o0
OF :/[E’Jr,'*r‘.ﬁr.‘) M(p) (.i *)
Oy
| Ho + 2g|to|? Vg
M(p) = e ,ﬂf' o o |2
gy Ho + 2g|o

= Negative eigenvalues of M(p) =
energetic (Landau) instability.

It takes place in the presence of
dissipation (impurities, obstacles,
thermal excitations, etc.)

Landau Instability

Superfluidity

Energy local minimum Energy saddle point

» Time dependent fluctuations:
b(t) = o + 5¢(1)

= Bogoliubov equations:

r‘fl-n" ﬂ"..

Ot 01"
(I 0 |

== \o -1

» Imaginary eigenvalues of M(p) =
modes that grow exponentially with
time. Dynamical instability.




Excitations of a BEC in a lattice

From Bogoliubov equation: stability diagram in the (P,q) plane at a given s.

The results agree with time-dependent GP simulations and with experiments
(at LENS, Florence) on the disruption of superfluidity of a BEC accelerated in a
lattice.

o

0 20 40 60 B0 100
t (ms)

-100 -50 50 100

Center-of-mass velocity vs time.



Excitations of a BEC in a lattice

The band structure of the Bogoliubov excitations can also be measured by

means of light (Bragg) scattering as in recent experiment in Florence (Fabbri et
al., 2009; Clement et al., 2009).

8

-
]

Resonance energies (E)




Let us come back to

Bloch waves and bands

2m\ dz

_h_z(i_

l%) @p(2)+ [g‘¢P(Z)‘2 + Vopr(z)

@p(2) = U(P)P,(2)

average density

Large s: tight-binding limit T

Lowest Bloch band (gn=0.4Ey)

E(P) = 2/5J sin”(Pd / 2#h)

035 F o

P |
“—N=_NEOHO

e

S,

hZ
m d*

In this regime the flow is dominated
by macroscopic tunnelling between o1 |
lattice sites.

tunnelling energy

0.05

P/PR



Let us come back to

Bloch waves and bands

W (d P ’ 2
_%(E_l%j ¢P(z)+[g‘¢P(z)‘ +V,,(2)

@p(2) = U(P)P,(2)

average density

Lowest Bloch band (gn=0.4Ey)

Large s: tight-binding limit 04

1

7]
]

0.35 |

SJpankooO

bbpowy

wn

E(P) = 2/5J sin”(Pd / 2#h)

v
hZ

0, = 0 tunnelling energy

In this regime the flow is dominated
by macroscopic tunnelling between o1 |
lattice sites.

0.05

We want to understand the connection

with the physics of Josephson effect "

0.5

P/PR



Josephson oscillations

BEC in a double well potential

Nonstationary solutions of GP
equation in the form

W) =W, (s N,)e™ + W (2N, )e™

where N=N_+ N, is constant.

—20

Assumption: small overlap between two BECs under the batrrier.

Important results: atomic current associated with phase difference!!

I_aNa __ON,
B B at z=0
ot ot — : .
[==1ing¢
with 1_:2[41 o _y
om0z

oWV

¢:::éi1._‘sz

/

Josephson, 1962
}Z:O



Josephson oscillations

BEC in a double well potential

Now recall the phase equation \ /\ /
a Ha )

1
h_S:_(Emvé-'_Vext-l_:uj "

ot

and neglect v2 (small currents). One gets

a¢ _ 1 _ —|20 | —|10 | (I) | 1|0 | 2|0
o = i) :
Then define
k=(N,—-N,)/2
d¢g _ E. | _ A,
- —_— - h E.=2
and expand u with respect to k. One gets Y : k| wit C dN.
: dk _ :
Moreover, this equation |/ =—/;sin¢| becomes o —I,;sing




Josephson oscillations

BEC in a double well potential

a¢ _ EC ¢ Sa Sb
—=——k k=(N,-N,)/2
ot h du

dk _ E, Be=200

— =——=sIngQ @

dt h E, =hl,

These two equations are valid
for small overlap, small current,
large N, and N,, small (N,-N,).

They can be rewritten in Hamiltonian form:

Josephson 1
Hamiltonian

H, ZEECkz —E, cos@

Small oscillations: Aw=./E E,

ohk _ 0H,
o 0Q
dp O0H,
ot (k)

Note: hk and gplay the role of
canonically conjugate variables!




Josephson oscillations

BEC in a double well potential

A more accurate form of E;, including

a correct k dependence (coming from Ve
the dependence of W,,, on N, ): \/
E, =(J, /2N N> —4k>
2

- oy oy, E
with " b
9, _m {wa ~, lzo a(b) \/ a(b) wa(b)

Josephson Hamiltonian: ahk _ aHJ
_Ee o o, 2 _ A2 at 0(0
HJ—Tk 7\/N 4k~ cos@ dp _ oH,

ot (k)




Josephson oscillations in a lattice

A generalization of the previous calculations gives the
Josephson Hamiltonian:

H, ===C % (V) =8, 2N (Ng + N XNy + N)) €os(S,., = 5))
[ [

number of atoms in site ¢

where e
N,=N,-N

> average (equilibrium) number of atoms in site £

E.= 2d,ul /dN,| on-site energy parameter (or charging energy)

(approximation: only tunnelling between adjacent sites)

aw,ﬂ oy, Tunnelling energy parameter
wl wl+l




Josephson oscillations in a lattice

Mol ol ol ol

H, ===C % (N)) =0, 2 (Ny + N XNy + N)) cos(S,., = 5))
[ [

Equilibrium: Nl' =0, S, =const
Small oscillations around equilibrium:

oS E,. , C
F=-—=N, + o (N =2N,+ N )
ot 2h 4N,
ON, _

ot

_NOJJ (S1+1 - 2S1 T Sl—l)




Josephson oscillation

S In a lattice

E ' ' ' '
%% =-——N,+ o (N =2N,+ N )
ot 2h 4N,

Y _NOJJ (S1+1 _2Sz +S1—1)

guasi-momentum

of the excitation £ th
A energy of the

excitation

By looking for periodic solutions |S, (¢), N, (t)

/

Oexplillpd - £, (p)t)/ ]

one finds the dispersion relation in tight binding limit (Javanainen 1999)

gezxc(p) = NOECEO(p) +E§(p)

with |&,(p) =20, sin”(pd / 2h)

This is the spectrum of
excitations. It includes the free
particle limit (E.=0) and the
phononic limit (long wavelength),
In a lattice.




Josephson oscillations in a lattice

Large s: tight-binding limit

Energy per particle of BEC moving in the
lattice with quasi-momentum P

Lowest Bloch band (gn=0.4Ey)

1

7]
]

£(P)=20,sin’(Pd/2h)

SJpankooO

bbpowy
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Same Bj

Energy of single-particle excitations with
quasi-momentym p in a BEC at rest: 015 |

&,(p) =20, sin’(pd / 2h) |

In this regime the flow is dominated by

(Josephson) tunnelling between lattice sites. & ==

P/PR



Josephson oscillations in a lattice

The physics of the Josephson effect is the subject of a huge field of
Investigations:

» in superconducting devices (Josephson junctions)
» in superfluids (3He and He4, ultracold gases)

Recent experiments by M. Oberthaler et al.
with BECs in a double well




Josephson oscillations in a lattice

The physics of the Josephson effect is the subject of a huge field of
Investigations:

» in superconducting devices (Josephson junctions)
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with a BEC in an optical lattice in the g 2
regime of weakly coupled condensates fl Y i i 1A
(Josephson Junction Arrays with Bose- ol TV

Einstein Condensates, Science, 2001)




From superfluid to Mott insulator

What we have seen so far is valid if the number of particles in each lattice site
is large (i.e., well defined BEC density and phase, GP theory works, etc.).

If the number of particles per site is of order of unity the formalism of
Josephson Hamiltonian is no longer adequate.

This is usually the case in 3D optical lattices.
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From superfluid to Mott insulator

What we have seen so far is valid if the number of particles in each lattice site
Is large (i.e., well defined BEC density and phase, GP theory works, etc.).

If the number of particles per site is of order of unity the formalism of
Josephson Hamiltonian is no longer adequate.

One has to start again from the full quantum Hamiltonian
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H = [dr (r){ ex[(r)}LIJ(r)+ [[drar & (r)® (¢ HP(r)

use the potential V,, = go(r —r')
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From superfluid to Mott insulator

H = [dr @*(r){— JaEi Vm(r)} G(r)+£ [dr O ()@ ()P P(r)
2m 2

Then remember that we are in lattice and write the field operators using a
basis of single site operators: . .
LIJ = Zk ¢kc|lk

s> This creates a
particle in the k-site

By ignoring all interaction terms except those

involving nearest neighbors, one obtains — > Pairs of nearest neighbors
Bose-Hubbard | /7 — Ec Z A oA 5] Z Al A At A
= — —-])—— +
Hamiltonian H 4 knk (nk 1) o <k.I> (ak a, v da, ak)
Nt At A
e . n, —a,d, .
On-site interaction Tunnelling parameter

E.=2g [dr|g,] 3, =2 [dr g, |- (1> 1 2m)T +V., |9,




From superfluid to Mott insulator

Hamiltonian

Bose-Hubbard |y _ £ A o o Ak A L A A
o H_Tczknk(nk_1)_7jz<k91>(a;al+al+ak

)

» The phase diagram of B-H Hamiltonian exhibits a superfluid- Mott
Insulator transition for integer values of the average occupation

number per site.

> Superfluid phase corresponds to non vanishing of average

<qJ> = <Zk ¢k&k> #0| Order parameter

> For occupation number =1 many-body theory theory predicts
guantum phase transition at critical value (Fisher et al. 1989)

E./0, =348

> For larger values of £. /9, insulator phase (no long range
order).

» For smaller values superfluid phase (long range order).




From superfluid to Mott insulator

- Extension of theory to harmonic trapping: Jacksch et al. ,1998.

- In Bose gases, the superfluid phase can be tested by measuring interference
patterns in expanding condensates. Interference is the result of the occurrence
of an order parameter and reflects its coherent behaviour in momentum space.

- Disappearence of fringes at large lattice intensities reveals the occurrence of
the transition to the Mott insulating phase.

(I.Bloch et al.
Nature 2002)

superfluid Mott superfluid
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What next:

Ultracold Fermions and Bogoliubov - de Gennes theory



