BECs in optical lattices

1D lattice + harmonic trap

A periodic potential can be generated by two counter-propagating laser beams which produce a standing wave of the form $E(z, t)=E e^{-i \omega t} \sin (q z)+c . c$.

The time averaged effective field $\quad V_{o p t}(z)=-(1 / 2) \alpha(\omega)\left\langle E^{2}(z, t)\right\rangle$ takes the form

$$
V_{o p t}(z)=-\alpha(\omega) E^{2} \sin ^{2}(q z)
$$

where $\quad \alpha(\omega) \equiv$ dipole polarizability.
(natural extension to 2D and 3D periodic potentials)

Ideal crystal-like systems:
no impurities

* no defects
* bosons, fermions, or both together.
* possibility of tuning depth of the potential, lattice spacing, atom-atom interaction, dimensionality.

New physics in the presence of periodic potentials.

-Without interaction:

Interference in momentum distribution, Bloch oscillations, etc.

- With interactions:

Josephson oscillations, dynamic instabilities, superfluid-Mott insulator transition and other quantum phases (including spin degrees of freedom).

Sort of "Solid state physics" revisited!

BEC in 1D optical lattice

Important length scale: recoil energy
Bragg wavevector

$$
q_{B}=\pi / d
$$

The external potential can be written as

BEC in 1D optical lattice

$$
\begin{aligned}
& V_{\text {opt }}(z)=s E_{r} \sin ^{2}(q z) \\
& \text { TMMOMOMOMMMMMOM }
\end{aligned}
$$

Th
po

Not
If noninteracting:
Width of the
wavefunction
in a lattice site

BEC in 1D optical lattice

$$
V_{o p t}(z)=s E_{r} \sin ^{2}(q z)
$$

$$
\Psi(z)=\sum_{l} f(z-l d)
$$

Fourier transform of Wannier function

$$
\text { Momentum distribution } n(p)=|\Psi(p)|^{2}
$$

where $\Psi(p)=(2 \pi \hbar)^{-1 / 2} \sum_{l} \int d z e^{-i p z / \hbar} f(z-l d)=f_{0}(p) \sum_{l} e^{-i l d p}$
If noninteracting: $\left\lvert\, \begin{aligned} & \text { If } s \gg 1 \\ & n(p)=f_{0}^{2}(p) \frac{\sin ^{2}\left(N_{w} p d / 2 \hbar\right)}{\sin ^{2}(p d / 2 \hbar)} \\ & f_{0}(p)=\frac{\sigma^{1 / 2}}{\pi^{1 / 4} \hbar^{1 / 2}} \exp \left(-p^{2} \sigma^{2} / 2 \hbar^{2}\right)\end{aligned}\right.$

BEC in 1D optical lattice

$$
\begin{aligned}
& n(p)=f_{0}^{2}(p) \frac{\sin ^{2}\left(N_{w} p d / 2 \hbar\right)}{\sin ^{2}(p d / 2 \hbar)} \\
& f_{0}(p)=\frac{\sigma^{1 / 2}}{\pi^{1 / 4} \hbar^{1 / 2}} \exp \left(-p^{2} \sigma^{2} / 2 \hbar^{2}\right)
\end{aligned}
$$

The momentum distribution is characterized by series of peaks located at

$$
p=2 \pi \hbar n / d=2 n \hbar q_{B}=2 n p_{B}
$$

Each peak has relative weight

$$
\exp \left(-4 \pi^{2} n^{2} \sigma^{2} / d^{2}\right)
$$

and relative width

Size of the trapped gas

BEC in 1D optical lattice

coherent matter wave diffraction from a lattice made of light instead of coherent light diffraction from a lattice made of matter

Free expansion of BEC out of a lattice

BEC in 1D optical lattice

coherent matter wave diffraction from a lattice made of light instead of coherent light diffraction from a lattice made of matter

Free expansion of BEC out of a lattice in 3D (I.Bloch et al., 2002)

BEC in 1D optical lattice

coherent matter wave diffraction
from a lattice made of light instead of coherent light diffraction from a lattice made of matter

Note:

Interactions and harmonic trapping do not change significantly the mechanism of the expansion and the peak separation provided

$$
\mu<E_{r}
$$

They instead affect the occupation number of atoms in each well and hence the shape of the density distribution.

One can use GP theory (within certain limits of applicability)

Bloch waves and bands

A uniform system is translationally invariant

momentum is a good quantum number

A periodic external potential breaks the translational invariance
momentum is NOT a good quantum number

HAMAMAMAMAMAMNMAMAMV

However, one can always write wavefunctions (and order parameter) in this form:

$$
\Psi_{P}(z)=e^{i P z / \hbar} \varphi_{P}(z) \quad \text { Bloch waves (as for electrons in a solid) }
$$

where $\varphi_{P}(z)$ has the same periodicity of the lattice: $\varphi_{P}(z)=\varphi_{P}(z+d)$
P is the quasi-momentum!
It coincides with true momentum only in the limit $s \rightarrow 0$

Bloch waves and bands

For a BEC in an 1D optical lattice, one can use the Bloch wave decomposition

$$
\Psi_{P}(z)=e^{i P z / \hbar} \varphi_{P}(z)
$$

for the order parameter solution of the GP equation.

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d z^{2}}+V_{o p t}(z)+g\left|\Psi_{P}(z)\right|^{2}\right] \Psi_{P}(z)=\mu \Psi_{P}(z)
$$

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d}{d z}-i \frac{P}{\hbar}\right)^{2} \varphi_{P}(z)+\left[g\left|\varphi_{P}(z)\right|^{2}+V_{o p t}(z)\right] \varphi_{P}(z)=\mu(P) \varphi_{P}(z)
$$

$\mathrm{P}=0 \rightarrow \mathrm{BEC}$ at rest in the lattice.
$\mathrm{P} \neq 0 \rightarrow \mathrm{BEC}$ moving in the lattice.

Bloch waves and bands

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d}{d z}-i \frac{P}{\hbar}\right)^{2} \varphi_{P}(z)+\left[g\left|\varphi_{P}(z)\right|^{2}+V_{o p t}(z)\right] \varphi_{P}(z)=\mu(P) \varphi_{P}(z)
$$

Since all functions are periodic with period d, one can solve this equation in a single lattice site.

The energy of the solutions will be a function of the quasi-momentum P, which can be calculated in the first Brillouin zone:

$$
-p_{B} \leq P \leq p_{B}, \quad p_{B}=\hbar / d
$$

Bloch waves and bands

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d}{d z}-i \frac{P}{\hbar}\right)^{2} \varphi_{P}(z)+\left[g\left|\varphi_{P}(z)\right|^{2}+V_{o p t}(z)\right] \varphi_{P}(z)=\mu(P) \varphi_{P}(z)
$$

Without lattice:

$$
\varepsilon_{0}(P)=P^{2} / 2 m
$$

$$
\text { Lowest Bloch band }\left(g n=0.4 E_{R}\right)
$$

Bloch waves and bands

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d}{d z}-i \frac{P}{\hbar}\right)^{2} \varphi_{P}(z)+\left[g\left|\varphi_{P}(z)\right|^{2}+V_{o p t}(z)\right] \varphi_{P}(z)=\mu(P) \varphi_{P}(z)
$$

Without lattice:

$$
\mathcal{E}_{0}(P)=P^{2} / 2 m
$$

With lattice, in the small P limit:
Lowest Bloch band ($g n=0.4 E_{R}$)

$$
\varepsilon(P)=P^{2} / 2 m^{*}
$$

At small P, BEC flows in the lattice as it were a fluid of particle with mass m^{*} with current density

$$
J=n P / m^{*}
$$

Bloch waves and bands

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d}{d z}-i \frac{P}{\hbar}\right)^{2} \varphi_{P}(z)+\left[g\left|\varphi_{P}(z)\right|^{2}+V_{o p t}(z)\right] \varphi_{P}(z)=\mu(P) \varphi_{P}(z)
$$

Lowest Bloch band ($g n=0.4 E_{R}$)

Bloch waves and bands

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d}{d z}-i \frac{P}{\hbar}\right)^{2} \varphi_{P}(z)+\left[g\left|\varphi_{P}(z)\right|^{2}+V_{o p t}(z)\right] \varphi_{P}(z)=\mu(P) \varphi_{P}(z)
$$

Large s: tight-binding limit

Bloch waves and bands

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d}{d z}-i \frac{P}{\hbar}\right)^{2} \varphi_{P}(z)+\left[g\left|\varphi_{P}(z)\right|^{2}+V_{o p t}(z)\right] \varphi_{P}(z)=\mu(P) \varphi_{P}(z)
$$

Important remark:
GP equation is nonlinear. Differently from Schrödinger equation, it admits nonlinear stationary states with P larger than p_{B}.

Bloch waves and bands

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d}{d z}-i \frac{P}{\hbar}\right)^{2} \varphi_{P}(z)+\left[g\left|\varphi_{P}(z)\right|^{2}+V_{o p t}(z)\right] \varphi_{P}(z)=\mu(P) \varphi_{P}(z)
$$

Important remark:
GP equation is nonlinear. Differently from Schrödinger equation, it admits nonlinear stationary states with P larger than p_{B}.

Swallaw tails

Bloch waves and bands

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d}{d z}-i \frac{P}{\hbar}\right)^{2} \varphi_{P}(z)+\left[g\left|\varphi_{P}(z)\right|^{2}+V_{o p t}(z)\right] \varphi_{P}(z)=\mu(P) \varphi_{P}(z)
$$

PHYSICAL REVIEW A 67, 053613 (2003)

Important remark:

GP equation is nonlinear. Differently from Schrödinger equation, it admits nonlinear stationary states with P larger than p_{B}.

Swallaw tails

Machholm et al., PRA 67, 053613 (2003).

FIG. 1. Energy per particle as a function of wave number for the owest bands. The results are obtained from numerical calculations lased on wave function (6), as described in Sec. II B.

Bloch waves and bands

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d}{d z}-i \frac{P}{\hbar}\right)^{2} \varphi_{P}(z)+\left[g\left|\varphi_{P}(z)\right|^{2}+V_{o p t}(z)\right] \varphi_{P}(z)=\mu(P) \varphi_{P}(z)
$$

Important remark:
GP equation is nonlinear. Differently from Schrödinger equation, it admits nonlinear stationary states with P larger than p_{B}.

$$
\text { if } 2 g n>s E_{R}
$$

Other effects of nonlinearity: Solitons (bright, dark, gray,...)

Swallaw tails

Excitations of a BEC in a lattice

Excitations in the linear (small amplitude) regime: Bogoliubov quasiparticles.

$$
\begin{aligned}
& \hbar \omega_{j} u_{j}=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}-\mu+2 g n_{0}\right) u_{j}+g \Psi_{0}^{2} v_{j} \\
& -\hbar \omega_{j} v_{j}=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}-\mu+2 g n_{0}\right) v_{j}+g \Psi_{0}^{* 2} u_{j}
\end{aligned}
$$

with

$$
\Psi_{0}(\mathbf{r}, t)=e^{-i \mu t}\left[\Psi_{0}(\mathbf{r})+u_{j}(\mathbf{r}) e^{-i \omega_{j} t}+v_{j}^{*}(\mathbf{r}) e^{i \omega_{j} t}\right]=e^{-i \mu t}\left[\Psi_{0}(\mathbf{r})+\delta \Psi_{0}(\mathbf{r})\right]
$$

DOMOMOMOMOMOMOMOMOMON In a periodic potential \rightarrow Bloch waves

$$
\begin{aligned}
& \Psi_{0}(z, t)=e^{-i \mu(P) t} e^{i P z / \hbar}\left[\varphi_{P}(z)+\delta \varphi_{P}(z, t)\right] \\
& \quad \text { with } \quad \delta \varphi_{P}(z, t)=\sum_{q, j}\left[u_{q P, j}(z) e^{i\left(q z-\omega_{q P, j} t\right)}+v_{q P, j}^{*}(z) e^{-i\left(q z-\omega_{q P, j} t\right)}\right]
\end{aligned}
$$

Excitations of a BEC in a lattice

Excitations in the linear (small amplitude) regime: Bogoliubov quasiparticles.

$$
\begin{aligned}
& \hbar \omega_{j} u_{j}=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}-\mu+2 g n_{0}\right) u_{j}+g \Psi_{0}^{2} v_{j} \\
& -\hbar \omega_{j} v_{j}=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}-\mu+2 g n_{0}\right) v_{j}+g \Psi_{0}^{* 2} u_{j}
\end{aligned}
$$

with

$$
\Psi_{0}(\mathbf{r}, t)=e^{-i \mu t}\left[\Psi_{0}(\mathbf{r})+u_{j}(\mathbf{r}) e^{-i \omega_{j} t}+v_{j}^{*}(\mathbf{r}) e^{i \omega_{j} t}\right]=e^{-i \mu t}\left[\Psi_{0}(\mathbf{r})+\delta \Psi_{0}(\mathbf{r})\right]
$$

DOMOMOMOMOMOMOMOMOMON in a periodic potential \rightarrow Bloch waves

$$
\Psi_{0}(z, t)=e^{-i \mu(P) t} e^{i P z / \hbar}\left[\varphi_{P}(z)+\delta \varphi_{P}(z, t)\right]
$$

quasi-momentum of the condensate

Excitations of a BEC in a lattice

$$
\begin{aligned}
& \hbar \omega_{j} u_{j}=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}-\mu+2 g n_{0}\right) u_{j}+g \Psi_{0}^{2} v_{j} \\
& -\hbar \omega_{j} v_{j}=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}-\mu+2 g n_{0}\right) v_{j}+g \Psi_{0}^{* 2} u_{j} \\
& \Psi_{0}(z, t)=e^{-i \mu(P) t} e^{i P z / \hbar}\left[\varphi_{P}(z)+\delta \varphi_{P}(z, t)\right] \\
& \delta \varphi_{P}(z, t)=\sum_{q, j}\left[u_{q P, j}(z) e^{i\left(q z-\omega_{q P, j} t\right)}+v_{q P, j}^{*}(z) e^{-i\left(q z-\omega_{q P, j} t\right)}\right]
\end{aligned}
$$

Excitations of a BEC in a lattice

$$
\begin{aligned}
& \hbar \omega_{j} u_{j}=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}-\mu+2 g n_{0}\right) u_{j}+g \Psi_{0}^{2} v_{j} \\
& -\hbar \omega_{j} v_{j}=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}-\mu+2 g n_{0}\right) v_{j}+g \Psi_{0}^{* 2} u_{j} \\
& \Psi_{0}(z, t)=e^{-i \mu(P) t} e^{i P z / \hbar}\left[\varphi_{P}(z)+\delta \varphi_{P}(z, t)\right] \\
& \delta \varphi_{P}(z, t)=\sum_{q, j}\left[u_{q P, j}(z) e^{i\left(g z-\omega_{q P, j} t\right)}+v_{q P, j}^{*}(z) e^{-i\left(q z-\omega_{q P, j} t\right)}\right]
\end{aligned}
$$

Including transverse radial trapping:

$$
\delta \varphi_{P}(r, z, t)=\sum_{q, j, j}\left[u_{q P, j, n}(z) e^{i\left(q z-\omega_{q P,,, n} n^{t}\right)}+v_{q P, j, n}^{*}(z) e^{-i\left(q z-\omega_{q P, j, n} t\right)}\right]
$$

Excitations of a BEC in a lattice

Example: no lattice ($P=0$, only q and n)

Excitations of a BEC in a lattice

Example: no lattice ($P=0$, only q and n)

Excitations of a BEC in a lattice

Example: no lattice ($P=0$, only q and n)

Excitations of a BEC in a lattice

Example: no lattice ($P=0$, only q and n)

Excitations of a BEC in a lattice

Example: no lattice ($P=0$, only q and n)

Longitudinal Bogoliubov phonon: small q ($q \ll \xi^{-1}$), long wavelength. $\omega=c q$, with c sound velocity.

Excitations of a BEC in a lattice

Spectroscopic measurements by means of light (Bragg) scattering. Measure of the total momentum transferred to a BEC. Resonant response at the Bogoliubov frequencies.

Multi-branch Bogoliubov spectrum

J.Steinhauer, N.Katz, R.Ozeri, N.Davidson, C.Tozzo, F.Dalfovo, PRL 90, 060404 (2003)

Excitations of a BEC in a lattice

Example: no lattice ($P=0$, no j, only q and n)

Excitations of a BEC in a lattice

In a lattice + transverse trap

Excitation spectrum of a BEC at rest $(\mathrm{P}=0)$ in a lattice with $\mathrm{s}=5$.
Lowest two Bloch bands, 20 radial branches.

Excitations of a BEC in a lattice

In a lattice + transverse trap

radial breathing

$$
\omega=2 \omega_{\text {trap }}
$$

Excitation spectrum of a BEC at rest $(P=0)$ in a lattice with $s=5$.
Lowest two Bloch bands, 20 radial branches.

Excitations of a BEC in a lattice

In a lattice + transverse trap

Iongitudinal phonon $\omega=c q$

Excitation spectrum of a BEC at rest $(P=0)$ in a lattice with $s=5$.
Lowest two Bloch bands, 20 radial branches.

Excitations of a BEC in a lattice

In a lattice + transverse trap

Bogoliubov sound velocity of the lowest phononic branch vs. the analytic prediction
$\mathrm{c}=\left(\mathrm{km}^{*}\right)^{-1 / 2}$
longitudinal
phonon
$\omega=c q$

Excitation spectrum of a BEC at rest $(P=0)$ in a lattice with $\mathrm{s}=5$.
Lowest two Bloch bands, 20 radial branches.

Excitations of a BEC in a lattice

In a lattice + transverse trap

$$
P \neq 0 \rightarrow B E C \text { moving in the lattice }
$$

The Bogoliubov equations give the excitations on top of the moving BEC

Remember:

P : quasi-momentum of the condensate
$\hbar q: q u a s i-m o m e n t u m$ of the excitation
$q_{B}=\pi / d$: Bragg wavevector

Real part of the excitation spectrum for $P=0,0.25,0.5,0.55,0.75,1 \mathrm{p}_{\mathrm{B}}$. Lowest band only.

Excitations of a BEC in a lattice

In a lattice + transverse trap

Real part of the excitation spectrum for $P=0,0.25,0.5,0.55,0.75,1 \mathrm{p}_{\mathrm{B}}$. Lowest band only.

Excitations of a BEC in a lattice

In a lattice + transverse trap

$$
P \neq 0
$$

BEC moving

Note: Doppler effect on sound speed measured in the lattice frame.

Real part of the excitation spectrum for $P=0,0.25,0.5,0.55,0.75,1 \mathrm{p}_{\mathrm{B}}$. Lowest band only.

Excitations of a BEC in a lattice

In a lattice + transverse trap

Coupling between propagating and counter-propagating excitations.

Complex eigenfrequencies

Dynamical instability

Real part of the excitation spectrum for $P=0,0.25,0.5,0.55,0.75,1 \mathrm{p}_{\mathrm{B}}$. Lowest band only.

Excitations of a BEC in a lattice

In a lattice + transverse trap

Phonon-antiphonon resonance \Rightarrow a conjugate pair of complex frequencies appears.
\Rightarrow resonance condition for two particles decaying into two different Bloch states

Real part of the excitation spectrum for $P=0,0.25,0.5,0.55,0.75,1 \mathrm{p}_{\mathrm{B}}$. Lowest band only.

Energetic and dynamical instability

- Stationary solution + fluctuations:

$$
\begin{gathered}
\psi=\psi_{0}+\delta \psi \\
\delta E=\int\left(\delta \psi^{*} \delta \psi\right) M(p)\binom{\delta \psi}{\delta \psi^{*}} \\
M(p)=\left(\begin{array}{cc}
H_{0}+2 g\left|\psi_{0}\right|^{2} & g \psi_{0}^{2} \\
g \psi_{0}^{* 2} & H_{0}+2 g\left|\psi_{0}\right|^{2}
\end{array}\right)
\end{gathered}
$$

- Negative eigenvalues of $M(p) \Rightarrow$ energetic (Landau) instability. It takes place in the presence of dissipation (impurities, obstacles, thermal excitations, etc.)

Energy local minimum

Landau Instability

Energy saddle point

- Time dependent fluctuations:

$$
\psi(t)=\psi_{0}+\delta \psi(t)
$$

- Bogoliubov equations:

$$
\begin{gathered}
i \hbar \partial_{t}\binom{\delta \psi}{\delta \psi^{*}}=\sigma_{z} M(p)\binom{\delta \psi}{\delta \psi^{*}} \\
\sigma_{z} \equiv\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
\end{gathered}
$$

- Imaginary eigenvalues of $M(p) \Rightarrow$ modes that grow exponentially with time. Dynamical instability.

Excitations of a BEC in a lattice

From Bogoliubov equation: stability diagram in the (P, q) plane at a given s.
The results agree with time-dependent GP simulations and with experiments (at LENS, Florence) on the disruption of superfluidity of a BEC accelerated in a lattice.

Center-of-mass velocity vs time.

Excitations of a BEC in a lattice

The band structure of the Bogoliubov excitations can also be measured by means of light (Bragg) scattering as in recent experiment in Florence (Fabbri et al., 2009; Clement et al., 2009).

Let us come back to

Bloch waves and bands

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d}{d z}-i \frac{P}{\hbar}\right)^{2} \varphi_{P}(z)+\left[g\left|\varphi_{P}(z)\right|^{2}+V_{o p t}(z)\right] \varphi_{P}(z)=\mu(P) \varphi_{P}(z)
$$

Large s: tight-binding limit

Let us come back to

Bloch waves and bands

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d}{d z}-i \frac{P}{\hbar}\right)^{2} \varphi_{P}(z)+\left[g\left|\varphi_{P}(z)\right|^{2}+V_{o p t}(z)\right] \varphi_{P}(z)=\mu(P) \varphi_{P}(z)
$$

Large s: tight-binding limit

Lowest Bloch band ($g n=0.4 E_{R}$)

Josephson oscillations

BEC in a double well potential

Nonstationary solutions of GP equation in the form
$\Psi(z, t)=\Psi_{a}\left(z ; N_{a}\right) e^{i S_{a}}+\Psi_{b}\left(z ; N_{b}\right) e^{i S_{b}}$
where $N=N_{a}+N_{b}$ is constant.

Assumption: small overlap between two BECs under the barrier.
Important results: atomic current associated with phase difference!!

$$
\begin{gathered}
I=\frac{\partial N_{a}}{\partial t}=-\frac{\partial N_{b}}{\partial t} \xrightarrow{\text { at } z=0} \quad \phi=S_{a}-S_{b} \\
\text { with } I_{j}=\frac{\hbar}{m}\left[\Psi_{a} \frac{\partial \Psi_{b}}{\partial z}-\Psi_{b} \frac{\partial \Psi_{a}}{\partial z}\right]_{z=0}
\end{gathered}
$$

Josephson oscillations

BEC in a double well potential

Now recall the phase equation
$\hbar \frac{\partial}{\partial t} S=-\left(\frac{1}{2} m v_{S}^{2}+V_{e x t}+\mu\right)$
and neglect v^{2} (small currents). One gets

$$
\frac{\partial \phi}{\partial t}=-\frac{1}{\hbar}\left(\mu_{a}-\mu_{b}\right)
$$

Then define

$$
k=\left(N_{a}-N_{b}\right) / 2
$$

and expand μ with respect to k. One gets $\frac{\partial \phi}{\partial t}=-\frac{E_{C}}{\hbar} k \quad$ with $\quad E_{C}=2 \frac{d \mu_{a}}{d N_{a}}$
Moreover, this equation $I=-I_{j} \sin \phi$ becomes $\frac{d k}{d t}=-I_{j} \sin \phi$

Josephson oscillations

 large N_{a} and N_{b}, small ($\left.N_{a}-N_{b}\right)$.

They can be rewritten in Hamiltonian form:
Josephson Hamiltonian

$$
H_{J}=\frac{1}{2} E_{C} k^{2}-E_{J} \cos \phi
$$

Small oscillations: $\hbar \omega=\sqrt{E_{C} E_{J}}$

$$
\begin{aligned}
& \frac{\partial \hbar k}{\partial t}=-\frac{\partial H_{J}}{\partial \phi} \\
& \frac{\partial \phi}{\partial t}=\frac{\partial H_{J}}{\partial(\hbar k)}
\end{aligned}
$$

Note: $\hbar k$ and ϕ play the role of canonically conjugate variables!

Josephson oscillations

BEC in a double well potential

A more accurate form of E_{J}, including a correct k dependence (coming from $V_{\text {ext }}$ the dependence of $\Psi_{\mathrm{a}(\mathrm{b})}$ on $\left.\mathrm{N}_{\mathrm{a}(\mathrm{b})}\right)$:

$$
E_{J}=\left(\delta_{J} / 2\right) \sqrt{N^{2}-4 k^{2}}
$$

with

$$
\delta_{J}=\frac{\hbar^{2}}{m}\left[\psi_{a} \frac{\partial \psi_{b}}{\partial z}-\psi_{b} \frac{\partial \psi_{a}}{\partial z}\right]_{z=0}
$$

Josephson Hamiltonian:

$$
H_{J}=\frac{E_{C}}{2} k^{2}-\frac{\delta_{J}}{2} \sqrt{N^{2}-4 k^{2}} \cos \phi
$$

$$
\begin{aligned}
& \frac{\partial \hbar k}{\partial t}=-\frac{\partial H_{J}}{\partial \phi} \\
& \frac{\partial \phi}{\partial t}=\frac{\partial H_{J}}{\partial(\hbar k)}
\end{aligned}
$$

Josephson oscillations in a lattice

A generalization of the previous calculations gives the Josephson Hamiltonian:

$$
H_{J}=-\frac{E_{C}}{4} \sum_{l}\left(N_{l}^{\prime}\right)^{2}-\delta_{J} \sum_{l} \sqrt{\left(N_{0}+N_{l+1}^{\prime}\right)\left(N_{0}+N_{l}^{\prime}\right)} \cos \left(S_{l+1}-S_{l}\right)
$$

where

$$
N_{l}^{\prime}=N_{l}-N_{0} \longrightarrow \text { average (equilibrium) number of atoms in site } \ell
$$

$$
\begin{aligned}
& E_{C}=2 d \mu_{l} / d N_{l} \quad \text { on-site energy parameter (or charging energy) } \\
& \delta_{J}=\frac{\hbar^{2}}{m}\left[\psi_{l} \frac{\partial \psi_{l+1}}{\partial z}-\psi_{l+1} \frac{\partial \psi_{l}}{\partial z}\right] \quad \begin{array}{l}
\text { Tunnelling energy parameter } \\
\text { (approximation: only tunnelling between adjacent sites) }
\end{array}
\end{aligned}
$$

Josephson oscillations in a lattice

$$
H_{J}=-\frac{E_{C}}{4} \sum_{l}\left(N_{l}^{\prime}\right)^{2}-\delta_{J} \sum_{l} \sqrt{\left(N_{0}+N_{l+1}^{\prime}\right)\left(N_{0}+N_{l}^{\prime}\right)} \cos \left(S_{l+1}-S_{l}\right)
$$

Equilibrium: $N_{l}^{\prime}=0, \quad S_{l}=$ const
Small oscillations around equilibrium:

$$
\begin{aligned}
& \frac{\partial S_{l}}{\partial t}=-\frac{E_{C}}{2 \hbar} N_{l}^{\prime}+\frac{\delta_{J}}{4 N_{0}}\left(N_{l+1}^{\prime}-2 N_{l}^{\prime}+N_{l-1}^{\prime}\right) \\
& \hbar \frac{\partial N_{l}^{\prime}}{\partial t}=-N_{0} \delta_{J}\left(S_{l+1}-2 S_{l}+S_{l-1}\right)
\end{aligned}
$$

Josephson oscillations in a lattice

$$
\begin{aligned}
& \frac{\partial S_{l}}{\partial t}=-\frac{E_{C}}{2 \hbar} N_{l}^{\prime}+\frac{\delta_{J}}{4 N_{0}}\left(N_{l+1}^{\prime}-2 N_{l}^{\prime}+N_{l-1}^{\prime}\right) \\
& \hbar \frac{\partial N_{l}^{\prime}}{\partial t}=-N_{0} \delta_{J}\left(S_{l+1}-2 S_{l}+S_{l-1}\right)
\end{aligned}
$$

quasi-momentum of the excitation

By looking for periodic solutions $S_{l}(t), N_{l}^{\prime}(t) \propto \exp \left[i\left(l p d-\varepsilon_{e x c}(p) t\right) / \hbar\right]$
one finds the dispersion relation in tight binding limit (Javanainen 1999)

$$
\begin{aligned}
& \varepsilon_{e x c}^{2}(p)=N_{0} E_{C} \varepsilon_{0}(p)+\varepsilon_{0}^{2}(p) \\
& \text { with } \varepsilon_{0}(p)=2 \delta_{J} \sin ^{2}(p d / 2 \hbar)
\end{aligned}
$$

This is the spectrum of excitations. It includes the free particle limit ($E_{C}=0$) and the phononic limit (long wavelength), in a lattice.

Josephson oscillations in a lattice

Large s : tight-binding limit

Energy per particle of BEC moving in the lattice with quasi-momentum P
In this regime the flow is dominated by
(Josephson) tunnelling between lattice sites.
In this regime the flow is dominated by
(Josephson) tunnelling between lattice sites.
Lowest Bloch band ($g n=0.4 E_{R}$)
Energy of single-particle excitations with quasi-momentum p in a BEC at rest:

$$
\varepsilon_{0}(p)=2 \delta_{J} \sin ^{2}(p d / 2 \hbar)
$$

Josephson oscillations in a lattice

The physics of the Josephson effect is the subject of a huge field of investigations:
$>$ in superconducting devices (Josephson junctions)
$>$ in superfluids (3 He and He 4 , ultracold gases)

Recent experiments by M. Oberthaler et al. with BECs in a double well

Josephson oscillations in a lattice

The physics of the Josephson effect is the subject of a huge field of investigations:
$>$ in superconducting devices (Josephson junctions)
$>$ in superfluids (3 He and He 4 , ultracold gases) a

From superfluid to Mott insulator

What we have seen so far is valid if the number of particles in each lattice site is large (i.e., well defined BEC density and phase, GP theory works, etc.).

If the number of particles per site is of order of unity the formalism of Josephson Hamiltonian is no longer adequate.

This is usually the case in 3D optical lattices.

From superfluid to Mott insulator

What we have seen so far is valid if the number of particles in each lattice site is large (i.e., well defined BEC density and phase, GP theory works, etc.).

If the number of particles per site is of order of unity the formalism of Josephson Hamiltonian is no longer adequate.

One has to start again from the full quantum Hamiltonian

$$
\hat{H}=\int d \mathbf{r} \hat{\Psi}^{+}(\mathbf{r})\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V_{\text {ext }}(\mathbf{r})\right] \hat{\Psi}(\mathbf{r})+\frac{1}{2} \iint d \mathbf{r} d \mathbf{r}^{\prime} \hat{\Psi}^{+}(\mathbf{r}) \hat{\Psi}^{+}\left(\mathbf{r}^{\prime}\right) V\left(\mid \mathbf{r}-\mathbf{r}^{\prime}\right) \hat{\Psi}\left(\mathbf{r}^{\prime}\right) \hat{\Psi}(\mathbf{r})
$$

use the potential $\quad V_{e f f}=g \delta\left(r-r^{\prime}\right)$

$$
\hat{H}=\int d \mathbf{r} \hat{\Psi}^{+}(\mathbf{r})\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V_{e x t}(\mathbf{r})\right] \hat{\Psi}(\mathbf{r})+\frac{g}{2} \int d \mathbf{r} \hat{\Psi}^{+}(\mathbf{r}) \hat{\Psi}^{+}(\mathbf{r}) \hat{\Psi}(\mathbf{r}) \hat{\Psi}(\mathbf{r})
$$

From superfluid to Mott insulator

$$
\hat{H}=\int d \mathbf{r} \hat{\Psi}^{+}(\mathbf{r})\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V_{e x t}(\mathbf{r})\right] \hat{\Psi}(\mathbf{r})+\frac{g}{2} \int d \mathbf{r} \hat{\Psi}^{+}(\mathbf{r}) \hat{\Psi}^{+}(\mathbf{r}) \hat{\Psi}(\mathbf{r}) \hat{\Psi}(\mathbf{r})
$$

Then remember that we are in lattice and write the field operators using a basis of single site operators:

$$
\hat{\Psi}^{+}=\sum_{k} \varphi_{k} \hat{a}_{k}^{+} \xrightarrow{\begin{array}{l}
\text { This creates a } \\
\text { particle in the } k \text {-site }
\end{array}}
$$

By ignoring all interaction terms except those
involving nearest neighbors, one obtains
\rightarrow Pairs of nearest neighbors
Bose-Hubbard Hamiltonian

$$
\hat{H}=\frac{E_{C}}{4} \sum_{k} \hat{n}_{k}\left(\hat{n}_{k}-1\right)-\frac{\delta_{J}}{2} \sum_{<k, \gg}\left(\hat{a}_{k}^{+} \hat{a}_{l}+\hat{a}_{l}^{+} \hat{a}_{k}\right)
$$

On-site interaction

$$
E_{C}=2 g \int d \mathbf{r}\left|\varphi_{k}\right|^{4}
$$

$$
\hat{n}_{k}^{+}=\hat{a}_{k}^{+} \hat{a}_{k}
$$

Tunnelling parameter

$$
\delta_{J}=-2 \int d \mathbf{r} \varphi_{k}\left[-\left(\hbar^{2} / 2 m\right) \nabla^{2}+V_{e x t}\right] \varphi_{l}
$$

From superfluid to Mott insulator

$$
\begin{aligned}
& \text { Bose-Hubbard } \\
& \text { Hamiltonian }
\end{aligned} \hat{H}=\frac{E_{C}}{4} \sum_{k} \hat{n}_{k}\left(\hat{n}_{k}-1\right)-\frac{\delta_{J}}{2} \sum_{<k, l>}\left(\hat{a}_{k}^{+} \hat{a}_{l}+\hat{a}_{l}^{+} \hat{a}_{k}\right)
$$

$>$ The phase diagram of B-H Hamiltonian exhibits a superfluid- Mott insulator transition for integer values of the average occupation number per site.

Superfluid phase corresponds to non vanishing of average

$$
\langle\hat{\Psi}\rangle=\left\langle\sum_{k} \varphi_{k} \hat{a}_{k}\right\rangle \neq 0 \quad \text { Order parameter }
$$

$>$ For occupation number $=1$ many-body theory theory predicts quantum phase transition at critical value (Fisher et al. 1989)

$$
E_{C} / \delta_{J}=34.8
$$

$>$ For larger values of E_{C} / δ_{J} insulator phase (no long range order).
$>$ For smaller values superfluid phase (long range order).

From superfluid to Mott insulator

- Extension of theory to harmonic trapping: Jacksch et al. ,1998.
- In Bose gases, the superfluid phase can be tested by measuring interference patterns in expanding condensates. Interference is the result of the occurrence of an order parameter and reflects its coherent behaviour in momentum space.
- Disappearence of fringes at large lattice intensities reveals the occurrence of the transition to the Mott insulating phase.

What next:
Ultracold Fermions and Bogoliubov - de Gennes theory

