Stationary
GP equation



Equation for the order parameter

) | »O° >
zh—at W (r,t)=| - +V,_(r)+ g\wo(r,r)\ W (r,?)
m

/ Gross-Pitaevskii equation

From lecture #1



Stationary GP

By inserting this
Wy(r,0) = e " W (r)

into the GP equation

) h°0?
lha LlJO(l',t) = |:_

Vo (1) +gL|Jo(l'J)2} Wo(r, )

one finds the stationary GP equation:

|:_ h2[| +V,.,(r)+ g‘LPO (r)2:| Wy (r) = uW,(r)
m

It gives the ground state of the condensate and all
possible stationary states (vortices, solitons, etc.)



Stationary GP: BEC in a box

Example: 1D box of size L and hard walls.

Solution of Schrédinger equation for free particles: |V, =+2#n sin(71z/ L)

GP equation with a > (
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Stationary GP: BEC in a box

In order to stress the role of interaction in GP, let us rescale the units:

1 z h’ 1 | healin
Yo-—=% . z-— where = | = | J
Con ¢ S Omgn \ 8rmn | 1€NIN

2

The GP equation becomes: _E Yi(z2)+ LIJO3 (z)=Y,(2)

If L >>¢ one can use the boundary conditions: P (0)=0,%, (0)=1

and the solution is:

Z

V2§

P (z)= V7 tanh




Stationary GP: BEC in a box

crucial parameter

P (z)= V7 tanh
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if L>>¢ GP predictions differ significantly from those of an ideal gas !
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\ y Stationary GP: harmonic trap v, :%mwiorz
\ /
/

E Noninteracting ground state: ¥, (7) Ul GXP("”2 /aio)

Role of interactions:

Using 4,

GP equation becomes

,land hc% as units of lengths and energy, and

a,, :\/h

/ ma),, | depends on

1] — -1/2 _-3/2

[-0% +72 +8m(Na/a, YP*()WF) =21V (7)

X

Thomas-Fermi parameter

It Na/a, <<1

It Na/a, >>1

Noninteracting ground state

Thomas-Fermi limit (a>0)




In an isotropic harmonic potential
the density is an inverted parabola

with radius

Stationary GP: harmonic trap

Na /a,, >>1

{% Vo (1) + 8| W, (r)z} o (r) = 1P, (r)

and thus

W, (o) = n(r) = é[u—nﬂ(r)] Thomas-Ferm

density profile

R=a,(15Nala,))"”

The chemical potential is fixed by
the normalization to N:

p=gn(0) = (1/ haw, (15Na/ a,,)*"

The Thomas-Fermi Na /a,, >> 1 limit implies:

/J >> hwho >

R>>a, , R>>¢
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,1' Stationary GP: harmonic trap
/
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\@ Note: Thomas-Fermi regime is compatible with diluteness condition

Gas parameter in the

‘ 3 ,, 3 1/6 12/5
center of the trap — na” =pa 1 g=0.1(N"ala,,)
Thomas-Fermi Diluteness
1/6
Na /a,, >>1 N "ala, <<

example: a/a, =107, N =10°

Na /a, =10 N'"ala, =107

Gross-Pitaevskii theory is not perturbative
even if the gas is dilute (role of BEC)!




Stationary GP: harmonic trap

a<o

For attractive force TF limit is not available.
For large N the system is unstable (negative
compressibility). Kinetic energy term term is
crucial to ensure metastable solution at finite N.

No stationary solution in a spherical

trap if

Physical insight provided by variational
approach based on Gaussian function:

M < (.58
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width of gaussian:

variational parameter

First experiments on collapse
in 8Rb (JILA, 2001)




Time-dependent
GP equation



Time-dependent Gross-Pitaevskii equation

) | R0’ >
ih—W (r,t)=| - +V_(r)+ g\wo(r,z)\ W (r,1)
m

ot

This equation can be
v Numerically solved (GP simulations)
v Linearized for small oscillations (Bogoliubov equations)

v’ Rewritten in terms of density and velocity (T=0 hydrodynamics)



Time-dependent Gross-Pitaevskii equation

Numerical integration.
Example: a BEC oscillating in a trap + optical lattice. Onset of instabilities.
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Time-dependent Gross-Pitaevskii equation

Linearization for small oscillations

Ansatz;  Wo(r,0) =e ™ [W,(r)+ U, (rye” " + V; (re']

K*°
2m

Zero-order in u and v: {— +V _(r)+ g‘LIJO (r)z} W (r)=u¥,(r)

2
First-order in u and v: hwjuj = [—552 +V _ﬂ+2gn0ju]’ +gL|J02vj
m

n’ 8
—ha)jvj = [_Mmz Vo _ﬂ+2gnojvj +gL|J02uj

Bogoliubov equations !



Bogoliubov equations

W, (r, 1) = e “ W, (r) +u,(r)e” ™ +v(r)e ']

Bogoliubov egs:

u and v are Bogoliubov quasiparticle amplitudes.

2

N Y
ha)ju].—[—D +V

2m
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—ha)jvj—[—D +V
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2m

ext

ext

,u+2gnojuj +gLIJ02v].

—,u+2gnojvj +gLIJ§2u].

hw are quasiparticle energies.

n, is the ground state density: #,(r) :\‘Po(l‘)\2




Bogoliubov equations

W, (r, 1) = e “ W, (r) +u,(r)e” ™ +v(r)e ']

Bogoliubov egs:

2

2m

N Y
ha)ju].—[—D +V

I I
—ha)jvj—[—[l +V

2

2m

ext

ext

,u+2gnojuj +gLIJ02v].

—,u+2gnojvj +gLIJ§2u].

Note: the same equations can be also derived diagonalizing
guantum Hamiltonian using Bogoliubov transformations.

Interacting particles - noninteracting quasiparticles




Bogoliubov equations

Properties of u and v:

2 2

- U, Vi

2:jdr

(@ ~a) [dr( )=0 =@ arereal, unless [dr

U, v,

occurrence of complex solutions —» dynamic instability

Ja’r (ul.uj. - v,.vj.) = 51.]. orthogonality and normalization

For each solution %;,V,, &, there exists another solution with v,, u,, — @
(the two solutions describe the same physical oscillation)

— i —i;t * ;i . .
It W(r,))=e (WY, tue 7 +ve ) ,with u,,v, @, solution of

Bogoliubov egs., then the energy change with respect to equilibrium is:

OE =hw, Idr(‘“f‘z _“’1‘2)

Condition of energetic stability 0E>0 =) w, Ja’r(‘uj‘2 —‘vjf) >0




[
Solutions of Bogoliubov equations in a uniform gas: U,V ] e

Bogoliubov equations

Bogoliubov
dispersion law

Wavelength of the oscillation:

A=2n/q

2

4q
2m

2
j +q°c’ with

to be compared with the healing length

& =h/\2mgn, =1/ 2me

L
”

Cq -~

phonons

c=.gn,/m

q?/2m

single-particles

g1




Bogoliubov equations

[
Solutions of Bogoliubov equations in a uniform gas: U,V ] e

5 \2
Bogoliubov W =h q + 4202 _ _
dispersion law [ qc with |c =4/gn,/ m

2m

Wavelength of the oscillation:
A=2n/q 5

to be compared with the healing length

q?/2m

f = h/\/@ — h/\/zmc single-particles

”

Cq -~

In nonuniform systems: numerical
phonons

solutions (eigenvalue problem)

- q



Time-dependent Gross-Pitaevskii equation

) | R0’ >
zh—at W (r,t)=| - +V_(r)+ g\wo(r,z)\ W (r,1)
m

This equation can be

v
v

v’ Rewritten in terms of density and velocity (T=0 hydrodynamics)



Time-dependent Gross-Pitaevskii equation

Rewritten in terms of density and velocity

4 , )
e [Lpo =/n eiS] witn | "=l density
= (h/m)DS) velocity

and insert into

l'hi P (r,1)= {— h2D2 +V _(r)+ g‘LIJ (r, } P, (r,1)
ot 2m

2n +Uvn)=0

ot >

0 1
m—v.+0 —mv? +V n— sz
or ° [2 > & 2m\/7 j




Time-dependent Gross-Pitaevskii equation

Rewritten in terms of density and velocity

quantum
pressure

These look like hydrodynamic equations,
except for quantum pressure

0
En+DmvSn) =0




Time-dependent Gross-Pitaevskii equation

What is quantum pressure in terms of energy density:

2
n:‘LIJO‘
_— EVS=(h/m)DS
inetic energy:
gy / \
B 2 m h*
E,, =— |ar|0W,| == [drvin { — [dr|OVn
o= farof = Jarvin {2 farlon)
energy of the gquantum
condensate flow pressure

To be compared with
mean-field energy
density =gn



Time-dependent Gross-Pitaevskii equation

0
E”"‘DEVS”):O

0 1 h’
m—v,+0 —mvi+V,_ +gn-— 02Jn |=0
at S (2 S ex g 2m\/; j

Hydrodynamic equations are obtained when quantum pressure is negligible,
l.e., if during the oscillation the density varies over distances A such that

B/ mA << gn or A>>¢




Time-dependent Gross-Pitaevskii equation

0
E”"'Dm"s”) =0

0 1
ma—VS+D(5mv§+Vext+gn— =0
[
v /] >SS f
0 a Hydrodynamic
—tn+DmVSn)—O equations of a
superfluid at T=0

0 |
mEVS +L Em"s Ve, tgn|=0 v, is the superfluid
velocity. The velocity field
IS Irrotational!

Note: Planck constant has disappeared !




Order parameter
and superfluidity



Superfluidity

“[...] from a modern point of view, superfluidity is
not a single phenomenon but a complex of phenomena”

[A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001)]




Superfluidity

Landau criterion for superfluidity

Case #1: Fluid at rest in the presence of moving walls or impurities, at T=0.

— V The dynamics in the moving
frame is governed by H = H —vlp

The fluid can absorb energy and momentum only through the creation
of elementary excitations. Creation of excitation costs energy.

At T=0 no excitation is created if £(p)—vIp=0 => the fluid remains at rest.

£(p) 0
p

the fluid remains at rest for V<V,

if |v, =min,

Note: the fluid at rest is not the ground state of H. => | metastable state!
The ground state would have J = Nmv




Superfluidity

Landau criterion for superfluidity

Case #2: Fluid moving in the presence of walls or impurities at rest, at T=0.

__V Similar arguments as before

Fluid current can decay only through the creation of elementary
excitations. Creation of excitation costs energy.

E
(p) Z 0| the current will not decay for v < Ve

if v, =min
P (persistent current)

metastable state!

Note: the fluid at rest is not the ground state of H.
The ground state would have J =0



Superfluidity

Landau criterion for superfluidity

Case #3: fluid at rest in a rotating bucket

& A
Q Dynamics in rotating frame governed by H = Ho - le

Fluid atrestif Q <Q . where |Q. =min, —=

energy of elementary excitation

10
[

angular momentum of elementary excitation

Qc 7 () <= | Landau criterion for superfluidity




Superfluidity

Landau criterion for superfluidity

Case #3: fluid at rest in a rotating bucket

The superfluid does not follow the rotation of the bucket for small Q,
but at higher Q it can lower its energy by nucleating vortices!




BEC and superfluidity

A BEC behaves as an irrotational superfluid, as a consequence of

[Lpo :«/Ze"SJ 4 N

2
with n=|W|
(Vg =n/mUS )
The velocity field
IS the gradient of a
scalar
xv, =0

For any closed
4015 W = 0| path in a simply

connected geometry

No rotation!



ddt g =0

BEC and superfluidity

For any closed
path in a simply
connected geometry

However, if the system is not simply connected (e.g., it
has a hole), than one can choose a path such that

dars :%W [0S = k—

h

m

\_'_I

guantized circulation!

AS = 2k77, k= 041,42, This condition follows from

Quantized vortex!

the single-valuedness of
the function

Y, =Jne®



BEC and superfluidity

For any closed

Cj‘df ¥V =0/ path in a simply

connected geometry

However, if the system is not simply connected (e.g., it
has a hole), than one can choose a path such that

cfd( B’S :z4d£ 1S = kﬁ quantized circulation!
m

m
Thi dition foll f
is condition follows from
= =()+].+
AS=2kn, k=0£L%2,.. the single-valuedness of

the function

Y, =Jne®

or quantized
circulation in a
toroidal geometry



BEC and superfluidity

Many experiments on quantized vorticity in BECs in the last decade!
A lot of interesting physics: vortex nucleation, vortex arrays, fast rotations and
Lowest Landau Level regime, quantum turbulence, KT transition in 2D,

Tkachenko waves, Kelvin modes, etc.

For a review, see A.Fetter, Rev. Mod. Phys. 81, 647 (2009)

Note: quantized vortices as the first clean evidence of superfluidity of
fermions in the BCS-BEC crossover !



BEC and superfluid hydrodynamics

From GP equation, neglecting quantum pressure:

0
E”"’Dm%”) =0

0 1
m—v.+0 —mv2+V ni=0
at S (2 S ext@

Can be rewritten in the form

0
E”"‘DEVS”):O

0 v +D(;mvs

e

local chemical potential

v

ext T /'l(n)

J=0 —

Hydrodynamic
equations of a
superfluid at T=0

In this form they are more
general !

this Euler equation is
equivalent to the equation
for the phase:

0 1
h—S=— —mv:+V_+
at (2 S ext /'Ij



BEC and superfluid hydrodynamics

Hydrodynamic eqgs of superfluids at T=0

0 These equations can be obtained,
—n+0vn)=0 independently of GP, starting from the
[ equation for the bosonic field operator

9 1 in uniform systems, imposing Galilean
m—v,+ D(_ mvé + Vext + Iu(n)j =0 invariance, and using a local density
ot 2 approximation for a slowly varying
order parameter.

h

In this context, n is the total density and the superfluid velocity is |V = — L1S
m

v Equations are classical (do not depend on Planck constant).

Velocity field is irrotational (role of the phase).

Condensate density does not enter HD eqs.

HD valid for macroscopic phenomena (length scales >> healing length)

HD applicable to both Bose and Fermi superfluids.

HD equations depend on equation of state p(n) (sensitive to quantum
correlations, statistics, dimensionality, ...).

HD equations can be linearized for small oscillations.



BEC and superfluid hydrodynamics

Hydrodynamic eqgs of superfluids at T=0

0

E”"'DEVS”):O

miv +D(1mv2+V +,u(n)j20
at S 2 S ext

\/HD equations can be linearized for small oscillations.

2
it n=n, +O0n HD egs become a_a'n =[] [Enom(a_'u

In a dilute Bose gas U = gn

and thus

with

2

ﬁé-n =0c*(r)0n)

mc*(r) = ndp ! 0n = ft, =V, (r)

local sound velocity




BEC and superfluid hydrodynamics

velocity of sound as a
function of central density

MIT, 1997



BEC and superfluid hydrodynamics

When wavelength becomes comparable to the size of the sample

the oscillations cannot be described in terms of sound waves. They involve a
motion of the whole system.

In the presence of harmonic trapping HD equations admit simple analytic
solutions for collective excitations.

The frequency of collective oscillations is one of observables which are
measurable with the greatest precision in experiments with ultracold atoms!

(A

5 milliseconds per frame



BEC and superfluid hydrodynamics

When wavelength becomes comparable to the size of the sample

the oscillations cannot be described in terms of sound waves. They involve a
motion of the whole system.

In the presence of harmonic trapping HD equations admit simple analytic
solutions for collective excitations.

The frequency of collective oscillations is one of observables which are
measurable with the greatest precision in experiments with ultracold atoms!

When quantum pressure cannot be ignored (small wavelength, rapidly
varying potentials, soliton and vortices, etc.) the full GP equation can be
used instead of HD equations, in dilute condensates at T=0.

If the gas is not dilute and/or at finite temperature one needs more...
(see Allan’s lectures).



What next:

BECs in optical lattices



