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Gross-Pitaevskii equation

From lecture #1
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By inserting  this 

into the GP equation ),(),()(2),( 020220 ttgVmtti ext rrrr Ψ Ψ++∇−=Ψ
∂
∂ hh

one finds the stationary GP equation: )()()()(2 002022 rrrr Ψ=Ψ Ψ++∇− µgVm exth
Stationary GP 

It gives the ground state of the condensate and all 
possible stationary states (vortices, solitons, etc.) 



Stationary GP: BEC in a box 

Example: 1D box of size L and hard walls.

Solution of Schrödinger equation for free particles:

GP equation with   
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d Ψ=Ψ+Ψ−The GP equation becomes:

If                  one can use the boundary conditions: 1)(,0)0( 00 =∞Ψ=Ψξ>>L
and the solution is: 

ξ2tanh)(0 znz =Ψ

In order to stress the role of interaction in GP, let us rescale the units: 

Stationary GP: BEC in a box 



nanmg π
ξ 8 12 2

== h healing 
length

ξ2tanh)(0 znz =Ψ

Stationary GP: BEC in a box 

crucial parameter 
characterizing  the 
interaction

If                  GP predictions differ significantly from those of an ideal gas !ξ>>L
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Noninteracting  ground state: )/exp()( 220 hoarr −∝Ψ hoho ma ω/h= depends on ħ
Role of interactions:

Using         and             as units of lengths and energy, and 

GP equation becomes )~(~~2)~(~)]~(~)/(8~~[ 222 rrraNar ho Ψ=ΨΨ++∇− µπ

If 

If 1/ >>hoaNa 1/ <<hoaNa Noninteracting ground state

Thomas-Fermi limit (a>0)

hoa hoωh 02/32/1~ Ψ=Ψ −− hoaN
Thomas-Fermi parameter

Stationary GP: harmonic trap



Stationary GP: harmonic trap1/ >>hoaNaIf
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and thus
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Thomas-Fermi 
density profile

In an isotropic harmonic potential 
the density is an inverted parabola 
with radius 5/1)/15( hoho aNaaR =

The chemical potential is fixed by 
the normalization to N: 5/2)/15()2/1()0( hoho aNagn ωµ h==

The Thomas-Fermi                         limit implies: 1/ >>hoaNa
ξωµ >>>>>> RaR hoho ,,h



Stationary GP: harmonic trap

from noninteracting 
to Thomas-Fermi:

Large effects due to 
interaction at equilibrium;
good agreement
with experiments

non interacting

a >0

non interacting

wave function

exp: Hau et al, 1998

hoaNa /
GP



Note: Thomas-Fermi regime is compatible with diluteness condition

Gas parameter in the 
center of the trap

5/126/133 )/(1.0/ hoaaNgana == µ

Thomas-Fermi Diluteness1/ >>hoaNa 1/6/1 <<hoaaN
example: 63 10,10/ == − Naa ho 310/ =hoaNa 26/1 10/ −=hoaaN

Gross-Pitaevskii  theory is not perturbative
even if the gas is dilute (role of BEC)!

Stationary GP: harmonic trap



a < 0

For attractive force TF limit is not available.  
For large N the system is unstable (negative 
compressibility). Kinetic energy term term is 
crucial to ensure metastable solution at finite N.

Physical insight provided by variational 
approach based on Gaussian function:

No stationary solution in a spherical 
trap if 58.0<hoa aN

222 2/2/32/32/3 2/1)( hoawrho eaw Nr −=
π

ψ

width of gaussian:
variational parameter

First experiments on collapse
in  85Rb  (JILA, 2001)

Stationary GP: harmonic trap



Time-dependent
GP equation



Time-dependent Gross-Pitaevskii equation

This equation can be� Numerically solved (GP simulations)� Linearized for small oscillations (Bogoliubov  equations)� Rewritten in terms of density and velocity (T=0 hydrodynamics) 
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Time-dependent Gross-Pitaevskii equation
Numerical integration.
Example: a BEC oscillating in a trap + optical lattice. Onset of instabilities.

time



Time-dependent Gross-Pitaevskii equation
Linearization for small oscillations ])()()([),( *00 tijtijti jj eveuet ωωµ rrrr ++Ψ=Ψ −−

Ansatz:

Zero-order in u and v: )()()()(2 002022 rrrr Ψ=Ψ Ψ++∇− µgVm exth
First-order in u and v: 

Bogoliubov equations !
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Bogoliubov equations])()()([),( *00 tijtijti jj eveuet ωωµ rrrr ++Ψ=Ψ −−

Bogoliubov eqs:

u and v are Bogoliubov quasiparticle amplitudes. ħω are quasiparticle energies. 

n0 is the ground state density:  
200 )()( rr Ψ=n

jjextjj jjextjj ugvgnVmv vgugnVmu 2*0022 20022 22 22
Ψ+ +−+∇−=−

Ψ+ +−+∇−=

µω

µω hh hh
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Bogoliubov eqs:

Note: the same equations can be also derived diagonalizing 
quantum Hamiltonian using Bogoliubov transformations.

interacting particles � noninteracting quasiparticles
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µω

µω hh hh



are real,  unless       0)()( 22* =−− ∫ iiii vudrωω ∫ ∫= 22 ii vdud rr
⇒

orthogonality and normalizationijjiji vvuud δ=−∫ )( **r iω⇒

For each solution                    there exists another solution with
(the two solutions describe the same physical oscillation)

If                                                              , with                      solution of 
Bogoliubov eqs., then the energy change with respect to equilibrium is: 

( )∫ −=
22 jjj vudE rωδ h

Condition of energetic stability     0)( 22
>−∫ jjj vudrω

iii vu ω,, iii uv ω−,, **jjj vu ω,,)(),( *00 tijtijti jj eveuet ωωµ ++Ψ=Ψ −−r 0>Eδ

occurrence of complex solutions           dynamic instability

Properties of u and v:

Bogoliubov equations



rq⋅∝ ievu,222222 2 cqmq += hωq/2πλ = mcmgn 2/2/ 0 hh ==ξ

Solutions of Bogoliubov equations in a uniform gas:

Bogoliubov 
dispersion law

Wavelength of the oscillation:

Bogoliubov equations

to be compared with the healing length 

mgnc /0=withε
qcq q2/2m

phonons

single-particles

ξ-1



rq⋅∝ ievu,222222 2 cqmq += hωq/2πλ = mcmgn 2/2/ 0 hh ==ξ

Solutions of Bogoliubov equations in a uniform gas:

Bogoliubov 
dispersion law

Wavelength of the oscillation:

Bogoliubov equations

to be compared with the healing length 

mgnc /0=withε
qcq q2/2m

phonons

single-particles

ξ-1

In nonuniform systems: numerical 
solutions  (eigenvalue problem)



Time-dependent Gross-Pitaevskii equation

This equation can be� Numerically solved (GP simulations)� Linearized for small oscillations (Bogoliubov  equations)� Rewritten in terms of density and velocity (T=0 hydrodynamics) 
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Time-dependent Gross-Pitaevskii equation
Rewritten in terms of density and velocity
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Time-dependent Gross-Pitaevskii equation
Rewritten in terms of density and velocity

These look like hydrodynamic equations, 
except for quantum pressure

quantum 
pressure
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Time-dependent Gross-Pitaevskii equation

What is quantum pressure in terms of energy density: 

GP kinetic energy: 

( )∫∫∫ ∇+=Ψ∇=
222202 222 ndmnvdmdmE Skin rrr hh 20Ψ=n SmS ∇= )/(hv
quantum 
pressure

energy of the 
condensate flow  

To be compared with
mean-field energy 
density  ≈ gn



Time-dependent Gross-Pitaevskii equation
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Hydrodynamic equations are obtained when quantum pressure is negligible, 
i.e., if during the oscillation the density varies over distances  λ such thatgnm <<22 / λh ξλ >>or



Time-dependent Gross-Pitaevskii equation
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021 0)( 2 = ++∇+
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equations of a 
superfluid at T=0

vs is the superfluid 
velocity. The velocity field 
is irrotational!

Note: Planck constant has disappeared !

ξλ >>



Order parameter 
and superfluidity



Superfluidity

“[…] from a modern point of view, superfluidity is 
not a single phenomenon but a complex of phenomena”

[A.J. Leggett, Rev. Mod. Phys. 73,  307 (2001)]



Superfluidity

Landau criterion for superfluidity

Case #1: Fluid at rest in the presence of moving walls or impurities, at T=0.  

v The dynamics in the moving 
frame is governed by pv ⋅−= 0HH

The fluid can absorb energy and momentum only through the creation 
of elementary excitations. Creation of excitation costs energy.

At T=0 no excitation is created if

0)(min ≠=
p
pv pc ε

Note: the fluid at rest is not the ground state of H. 
The ground state would have

metastable state! NmvJ =

cvv ≤

0)( ≥⋅− pvpε the fluid remains at rest.

If the fluid remains at rest for 



Superfluidity

Landau criterion for superfluidity

Case #2: Fluid moving in the presence of walls or impurities at rest, at T=0.  

v Similar arguments as before

Fluid current can decay only through the creation of elementary 
excitations. Creation of excitation costs energy.

0)(min ≠=
p
pv pc ε metastable state! cvv ≤if the current will not decay for 

(persistent current) 

Note: the fluid at rest is not the ground state of H. 
The ground state would have 0=J



Superfluidity

Landau criterion for superfluidity

Case #3: fluid at rest in a rotating bucket 

Dynamics in rotating frame governed by zlHH ˆ0 Ω−=

Fluid at rest if                   where

Ω CΩ<Ω

energy of elementary excitation≡)(lε
≡l angular momentum of  elementary excitation

l
llC )(min ε=Ω

Landau criterion for superfluidity 0≠ΩC



Superfluidity

Landau criterion for superfluidity

Case #3: fluid at rest in a rotating bucket 

Ω

• • •
• •

……..

The superfluid does not follow the rotation of the bucket for small Ω,
but at higher Ω it can lower its energy by nucleating vortices!



BEC and superfluidity

A  BEC behaves as an irrotational superfluid, as a consequence of20Ψ=niSen=Ψ0 SmS ∇= /hv
The velocity field 
is the gradient of a 
scalar 0=×∇ Sv 0=⋅∫ Sd vl For any closed

path in a simply 
connected geometry

with

No rotation!



BEC and superfluidity

However, if the system is not simply connected (e.g., it 
has a hole), than one can choose a path such that 

Quantized vortex!

m
hkSd

m
d S =∇⋅=⋅ ∫∫ l

h
l v

•

iSen=Ψ0,...2,1,0,2 ±±==∆ kkS π This condition follows from 
the single-valuedness  of 
the function

0=⋅∫ Sd vl For any closed
path in a simply 
connected geometry

quantized circulation!



BEC and superfluidity

However, if the system is not simply connected (e.g., it 
has a hole), than one can choose a path such that 

or quantized 
circulation in a 
toroidal geometry

m
hkSd

m
d S =∇⋅=⋅ ∫∫ l

h
l v

iSen=Ψ0,...2,1,0,2 ±±==∆ kkS π This condition follows from 
the single-valuedness  of 
the function

0=⋅∫ Sd vl For any closed
path in a simply 
connected geometry

quantized circulation!



BEC and superfluidity

Many experiments on quantized vorticity in BECs in the last decade!
A lot of interesting physics: vortex nucleation, vortex arrays, fast rotations and 
Lowest Landau Level regime, quantum turbulence, KT transition in 2D, 
Tkachenko waves, Kelvin modes, etc.

For a review, see A.Fetter, Rev. Mod. Phys. 81, 647 (2009)

Note: quantized vortices as the first clean evidence of superfluidity of 
fermions in the BCS-BEC crossover ! 
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Hydrodynamic 
equations of a 
superfluid at T=0

From GP equation, neglecting quantum pressure:

Can be rewritten in the form 0)(21 0)( 2 = ++∇+
∂
∂

=⋅∇+
∂
∂ nVmvtm nnt extSS S

µv v
local chemical potential

In this form they are more 
general !

 ++−=
∂
∂ µextS VmvSt 221hthis Euler equation is 

equivalent to the equation 
for the phase: 
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µv v These equations can be obtained, 
independently of GP, starting from the 
equation for the bosonic field operator 
in uniform systems, imposing Galilean 
invariance, and using a local density 
approximation for a slowly varying 
order parameter. 

� Equations are classical (do not depend on Planck constant).� Velocity field is irrotational (role of the phase).� Condensate density does not enter HD eqs.� HD valid for macroscopic phenomena (length scales >> healing length)� HD applicable to both Bose and Fermi superfluids.� HD equations depend on equation of state µ(n) (sensitive to quantum 
correlations, statistics, dimensionality, ...). � HD equations can be linearized for small oscillations. 

Hydrodynamic eqs of superfluids at T=0

In this context, n is the total density and the superfluid velocity is SmvS ∇= h
BEC and superfluid hydrodynamics



�HD equations can be linearized for small oscillations. nnn eq δ+=   ∂
∂∇⋅∇=

∂
∂ nnnnt δµδ 022if HD eqs become

In a dilute Bose gas gn=µ
and thus 

))(( 222 nrcn
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BEC and superfluid hydrodynamics
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µv vHydrodynamic eqs of superfluids at T=0
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velocity of sound as a 
function of central density

MIT, 1997

BEC and superfluid hydrodynamics



When wavelength becomes comparable to the size of the sample 
the oscillations cannot be described in terms of  sound waves.  They involve a  
motion of the whole system.

In the presence of harmonic trapping  HD equations admit simple analytic 
solutions for collective excitations.

The frequency of collective oscillations is one of observables which are 
measurable with the greatest precision in experiments with ultracold atoms!

BEC and superfluid hydrodynamics



When wavelength becomes comparable to the size of the sample 
the oscillations cannot be described in terms of  sound waves.  They involve a  
motion of the whole system.

In the presence of harmonic trapping  HD equations admit simple analytic 
solutions for collective excitations.

The frequency of collective oscillations is one of observables which are 
measurable with the greatest precision in experiments with ultracold atoms!

When quantum pressure cannot be ignored (small wavelength, rapidly 
varying potentials, soliton and vortices, etc.) the full GP equation can be 
used instead of HD equations, in dilute condensates at T=0.

If the gas is not dilute and/or at finite temperature one needs more…
(see Allan’s lectures).   

BEC and superfluid hydrodynamics



What next:

BECs in optical lattices


