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Prelude



First images of BEC with Rb atoms (JILA 1995)

At present: many condensates with more atomic species (Rb, Na, Li, H, He*, 
K, Cs, Yb), including condensates of molecules (Rb2, Na2, Cs2) and also 
degenerate fermions, fermionic superfluidity, BCS-BEC crossover,
fermi-fermi, bose-fermi, bose-bose mixtures, etc.  



Source: ISI – Web of Science
Keywords: bos* AND condens* (blue); cold OR ultracold AND fermi* (red)



Why BEC is important ?

Paradigm of statistical mechanics (phase transition in the 
absence of interactions). 

Exact description of the effects of interactions for dilute 
gases.

Fundamental concepts (long range order; spontaneous 
symmetry breaking; order parameter, quasi-particles, etc.)  
which play an important role in many areas of physics.



(taken from 
Debbie Jin, 
JILA)

Most recent: exciton-polariton gas in 2D cavities in semiconduct ors



Those due to interaction :
- sound propagation and collective oscillations
- solitary waves

Those due to phase coherence :
- interference 
- atom laser

Superfluid properties (interaction + coherence):
- viscousless motion
- quantized vortices
- Josephson effect

Some relevant properties of BEC

Quantum phase transitions : 
- Superfluid - Mott insulator
- Kosterlitz-Thouless



Changing the statistics and tuning  the interaction 

Cooling fermions to degeneracy. 

Tuning the interaction and/or  the external confining potentials:

from single-particle “textbook” physics                    to correlated many-body physics

Pairing of fermions: from BCS to molecular BEC



Why mean-field theories are important ?

These ultracold gases are dilute. 

Exact results can be obtained by  including the interaction at the 
mean-field level.

Many properties of dilute BECs are well described by the Gross-
Pitaevskii theory.

Accurate mean-field theories are also available for fermions.

A quantitative comparison between theory and experiment is 
possible at the mean-field level and beyond ! 
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Bose-Einstein Condensation



(Taken from W. Ketterle)



BEC in noninteracting gases

Textbook problem of quantum statistical mechanics. 
In the grandcanonical ensemble: 1]/)exp[( 1

−−
= Tkn Bii µε

BEC starts when the chemical potential is so close to ε0
that  (ε0 – µ) << kBT  and  the occupation number 
of i=0 state (n0≡N0)  becomes large and comparable to N: 

∑ =i i Nn
100 >>

−
≈

µε
TkN B

The value of µ is fixed by
normalization condition 1ε 0ε

µ

iiiH ϕεϕ =Occupation number of 
single-particle states: where



BEC in noninteracting gases1]/)exp[( 1
−−

= Tkn Bii µε

∑ =i i NnThe value of µ is fixed by
normalization condition 1ε 0ε

µ

Occupation number of 
single-particle states: where

number of atoms N T out of the condensate depends only on T,  not on N.

for  i>0, one can replace  µ with   ε0 in the above expression
and the occupation number of i-state does not depend any 
more on N !

µεµε −>>− 0i
Mechanism of BEC: ∑ ≠ −−

+= 0 00 1]/)exp[( 1i Bi TkNN
εε

The condition NT=N fixes the value of critical temperature

If

iiiH ϕεϕ =



BEC in noninteracting gases in 3D harmonic potential

[ ]222222
2
1 zyxmV zyxext ωωω ++= zzyyxxzyx nnnnnn ωωωε hhh )21()21()21(),,( +++++=)0,0,0(εµ =

iiiH ϕεϕ =

Single-particle hamiltonian:  H = p2/2m + Vext

Confining 
potential:

Spectrum of eigenstates:

Condition for BEC:

∑
≠ −++

= 0,, 1)](exp[ 1zyx nnn zzyyxxT nnnN
ωωωβh



BEC in noninteracting gases in 3D harmonic potential

∑
≠ −++

= 0,, 1)](exp[ 1zyx nnn zzyyxxT nnnN
ωωωβhiBTk ωh>>

3/194.0 NTk hocB ωh=

then one can transform the discrete sum into an integral 
(semiclassical approximation). 

and

)1(33gTkN hoBT =
ωh 3/1)( zyxho ωωωω =

If

The integration gives

where 

and  g3(1)=ς(3) , with ς(n) Riemann ς function

Critical temperature when NT=N, which implies: 30 1)( 





−= cTTN
TN
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Condensate fraction measured at JILA (1996)
EXPERIMENTAL EVIDENCE 

OF  PHASE TRANSITION



BEC in interacting gases

Many-body Hamiltonian: )(ˆ)'(ˆ)'()'(ˆ)(ˆ'21)(ˆ)(2)(ˆˆ 22 rrrrrrrrrrrr ΨΨ−ΨΨ+Ψ +∇−Ψ= +++ ∫∫∫ VddVmdH exth
where  )(ˆ rΨ and )(ˆ r+Ψ are bosonic field operators.

one-body density matrix: )'(ˆ)(ˆ)',()1( rrrr ΨΨ= +n

h
h

/)1(3 )2/,2/()2()(ˆ)(ˆ)( spsRsRsRppp ⋅−−+ −+=ΨΨ= ∫ ienddn π

),()(ˆ)(ˆ)( )1( rrrrr nn =ΨΨ= +

Relevant observables directly related to the one-body density matrix:

particle density :

momentum distribution :



BEC in interacting gases
momentum distribution :

∫== h/)1()1( )(1)()',( ipsepndpVsnn rrIn uniform systems

h
h

/)1(3 )2/,2/()2()( spsRsRsRp ⋅−− −+= ∫ ienddn π

0)()1( =∞→ssn
Usual situation: n(p) is a smooth function 
of p at low p 

However, the occurrence of BEC in noninteracting gases suggests that 
the p=0 state (lowest single-particle state in the uniform system) can be 
macroscopically occupied below a given critical temperature Tc. 
In terms of momentum distribution this means: 

)(~)()( 0 pnpNpn += δ

Smooth functionBEC



)(~)()( 0 pnpNpn += δ
V
Nnsn s 00)1( )( ==∞→

Off-diagonal long range order
(Landau, Lifschitz, Penrose, Onsager)

Example of calculation 
of density matrix in highly
correlated many-body 
system: liquid He4

(Ceperley, Pollock 1987) CTT <<CTT >

BEC in interacting gases

condensate 
fraction



BEC in interacting gases

Same concept, but in a more general form, including finite nonuniform systems.
Starting from the eigenvalues and eigenfunctions of the one-body density matrix.)()'()',(' )1( rrrrr iii nnd ϕϕ =∫ )'()()',( *)1( rrrr iiii nn ϕϕ∑=

Single-particle occupation numbers

One can define the eigenfunctions of the density matrix through this relation:

Once the orthonormalized eigenfunctions are found, one can write



BEC in interacting gases

)()'()',(' )1( rrrrr iii nnd ϕϕ =∫ )'()()',( *)1( rrrr iiii nn ϕϕ∑=

BEC occurs when 

∑ ≠
+= 0 *0*00)1( )'()()'()()',( i iiinNn rrrrrr ϕϕϕϕ

10 >>≡ Nno
If this happens, then it is convenient to rewrite the density matrix 
by separating the contribution arising from the condensate:

For large N the sum tends to zero at large distances. 
Conversely,  the first term remains  finite even at large |r-r’|, where one recovers the 
concept of long range order.  
But the diagonalization of the density matrix works even for finite systems, where 
BEC is identified with the eigenfunction having the largest eigenvalue (of the order 
of N).  



BEC in interacting gases

Example of diagonalization of the one-body density matrix: He4 droplets. 

Note: In bulk superfluid helium the condensate frac tion is of the order of 0.1 . 
In the droplet, the condensate fractions is locally larger near the surface, where the 
system is more dilute. 

[Lewart, Pandharipande and Pieper, Phys. Rev. B (1988)]



BEC in interacting gases)()'()',(' )1( rrrrr iii nnd ϕϕ =∫ )'()()',( *)1( rrrr iiii nn ϕϕ∑=

BEC occurs when 10 >>≡ Nno Single-particle occupation numbers

“We shall say that at any given time t, the system shows BEC if one or 
more of the eigenvalues ni(t) is of the order of the total number of particles 
N; and further that it shows simple BEC if one and only one eigenvalue is 
of order N, all the rest being of order 1. Systems showing nonsimple BEC 
(i.e., having more than one eigenvalue of order N) are sometimes said to 
be fragmented . The phrase ‘‘of order N(1)’’ is somewhat vague in a 
situation where there is no simple thermodynamic limit, but in practice this 
does not usually lead to difficulty.”
[A.J. Leggett, Rev. Mod. Phys. 73,  307 (2001)]



Order parameter and
Gross-Pitaevskii equation



)'(ˆ)(ˆ)',()1( rrrr ΨΨ= +n

Order parameter

)()'()',(' )1( rrrrr iii nnd ϕϕ =∫ ∑= i iiinn )'()()',( *)1( rrrr ϕϕ

Starting from the 
definition of n(1)

and using its eigenfunctions

one can define annihilation and creation operators 
+ii aa ˆ,ˆ

such that ijji aa δ=+ ]ˆ,ˆ[ 0]ˆ,ˆ[ =ji aa iijij naa δ=+ ˆˆ

and ∑=Ψ i ii â)()(ˆ rr ϕ ∑ ++ =Ψ i ii â)()(ˆ * rr ϕ



Order parameter

∑ ≠
+= 0 *0*00)1( )'()()'()()',( i iiinNn rrrrrr ϕϕϕϕ

∑ ≠
+=Ψ 000 ˆ)(ˆ)()(ˆ i ii aa rrr ϕϕ

Separating the condensate in n(1)

is equivalent to writing 

into the definition )'(ˆ)(ˆ)',()1( rrrr ΨΨ= +n
Very 
crucial 
point !

If the system exhibits BEC, then 1ˆˆ 0000 >>==+ Nnaa
while 1]ˆ,ˆ[ 00 =+aa
This means that the noncommutativity of these operators is 
inessential for most physical  properties. 

+00 ˆ,ˆ aa can be replaced by c-numbers 0N→



Order parameter

This

becomes )(ˆ)()(ˆ 0 rrr Ψ+Ψ=Ψ δ

)()( 000 rr ϕN=Ψ

∑ ≠
=Ψ 0 ˆ)()(ˆ i ii arr ϕδ

with

Usually fluctuations  are small in dilute gases at T=0.
This implies that the field operator can be approximated with a classical field
(Bogoliubov approximation).

Condensate order parameter (function) 

∑ ≠
+=Ψ 000 ˆ)(ˆ)()(ˆ i ii aa rrr ϕϕ

non-condensed part (operator)



Order parameter)()( 000 rr ϕN=Ψthe order parameter 

can be written as )(00 )()( rrr iSeΨ=Ψ
It is a complex function, defined up to a constant phase factor.
Fixing the phase S means breaking of gauge symmetry.0)()(ˆ 0 ≠Ψ=Ψ rr 1|)(ˆ|)(ˆ +Ψ=Ψ NN rr NetN tNiE h/)()( −=

)1()( −−= NENEµ

)(),( 0/0 rr Ψ=Ψ − htiet µ
And hence the stationary order parameter has this peculiar time-dependence:

It corresponds also to write 

where the average can be read as

For stationary states one has 

The key quantity is the chemical potential 



Equation for the order parameter

Is the order parameter ),(00 ),(),( tiSett rrr Ψ=Ψ

a solution of a Schrödinger-like equation ? 

),(ˆ),'(ˆ)'(),'(ˆ')(2),(ˆ 22 ttVtdVmtti ext rrrrrrrr Ψ Ψ−Ψ++∇−=Ψ
∂
∂ +∫hh

Starting point: equation of motion for the field operator ]ˆ,ˆ[ˆ Hti Ψ=Ψ
∂
∂h



Equation for the order parameter ),(ˆ),'(ˆ)'(),'(ˆ')(2),(ˆ 22 ttVtdVmtti ext rrrrrrrr Ψ Ψ−Ψ++∇−=Ψ
∂
∂ +∫hh
Delicate issue: replacing  the field operator  with the classical field 
(order parameter) in the interaction term requires a proper procedure. 

),(ˆ),(0 tt rr Ψ=Ψ

This is for the field operator. But we want something for the classical field



Equation for the order parameter ),(ˆ),'(ˆ)'(),'(ˆ')(2),(ˆ 22 ttVtdVmtti ext rrrrrrrr Ψ Ψ−Ψ++∇−=Ψ
∂
∂ +∫hh

A simple and correct procedure is applicable (in 3D) if 

The range of interaction and s-wave scattering length a are much     
smaller than the average distance d between particles

Temperature is sufficiently low .

Macroscopic variations of  the order parameter are considered 
(variation along distances much larger than a).

Only low energy two-body scattering properties are
relevant for describing the many-body problem. 



Equation for the order parameter ),(ˆ),'(ˆ)'(),'(ˆ')(2),(ˆ 22 ttVtdVmtti ext rrrrrrrr Ψ Ψ−Ψ++∇−=Ψ
∂
∂ +∫hh

Only low energy two-body scattering properties are
relevant for describing the many-body problem. 

The scattering length a is  the only relevant interaction parameter.

The equation for order parameter is obtained by using 

and by replacing V with the  effective potential)'( rrgVeff −= δ with mag /4 2
hπ=

),(ˆ),(0 tt rr Ψ=Ψ



Equation for the order parameter ),(),()(2),( 020220 ttgVmtti ext rrrr Ψ Ψ++∇−=Ψ
∂
∂ hh

Gross-Pitaevskii equation

It requires that:� N is large� The gas is dilute (quantum fluctuations are negligible)� The temperature is low (thermal fluctuations are negligible)

It is equivalent to:�treating the field operator like a classical field

13<<na CTT <<

)(ˆ)()(ˆ 0 rrr Ψ+Ψ=Ψ δ

20 ),(),( ttn rr Ψ=density: 



Equation for the order parameter

For non dilute gases and/or finite T one has 200 ),(),(),( ttntn rrr Ψ=≠

(see Allan Griffin’s lectures)

),(),()(2),( 020220 ttgVmtti ext rrrr Ψ Ψ++∇−=Ψ
∂
∂ hh

Gross-Pitaevskii equation



),(),()(2),( 020220 ttgVmtti ext rrrr Ψ Ψ++∇−=Ψ
∂
∂ hh

Now, some remarks on this equation…

GP



),(),()(2),( 020220 ttgVmtti ext rrrr Ψ Ψ++∇−=Ψ
∂
∂ hh

Remark #1

GP

The GP equation for order parameter is analog to Maxwell equations in classical 
electrodynamics.

The condensate wave function represents the classical limit of de Broglie 
waves (corpuscolar nature of matter no longer important). 

Difference : GP contains Planck constant explicitly, Maxwell doesn’t. 
This follows from the different dispersion law of photons and atoms: 

mpE
cpE

2/2=
=

mk
ck

2/2
h=

=
ω
ω

ωhh →→ Ekp ,

photons

atoms

particles (energy) waves (frequency)

from particles to waves:



),(),()(2),( 020220 ttgVmtti ext rrrr Ψ Ψ++∇−=Ψ
∂
∂ hh

Remark #2

GP

GP equation is nonlinear .

It is a special case of nonlinear Schrödinger equation (NLSE) widely used 
in many fields. It shares many analogies with the physics of nonlinear optics . 

The  equation for the order parameter is not an equation for a wave function 
and the solution is not a wave function in the usual QM sense (e.g., no linear 
superposition) .  It is sometimes called macroscopic wave function or
condensate wave function . 

The order parameter must not be confused with the many-body wave function 

The nonlinearity comes from interparticle interactions, which are represented 
by a mean-field potential energy in the effective Hamiltonian.     

);,...,,( 21 tNN rrrΨ



),(),()(2),( 020220 ttgVmtti ext rrrr Ψ Ψ++∇−=Ψ
∂
∂ hh

Remark #3

GP

The solution is a complex function, with modulus and phase .

The energy of the system does not depend on phases, but the condensate 
has a well defined phase. This is can be viewed as an example of broken 
gauge symmetry .

Be careful: in finite systems neither Long Range Order or Broken Gauge 
Symmetry are applicable concepts, strictly speaking, but the order parameter 
of the condensate is still well defined (eigenfunction of the one-body density 
matrix). 

The phase of the order parameter is crucial for superfluidity .



),(),()(2),( 020220 ttgVmtti ext rrrr Ψ Ψ++∇−=Ψ
∂
∂ hh

Remark #4

GP

The GP equation can be also obtained from the least action principle

∫  Ψ+Ψ+Ψ∇= 4020202 )(2)()()(2 rrrrr gVmdE exth *00 Ψ
=Ψ

∂
∂

δ
δ Etih 00*0 = +Ψ
∂
∂Ψ− ∫ ∫ dtEdtdti rhδ

which yields

where 

Gross-Pitaevskii energy functional



What next:

Statics and dynamics of BECs with GP equation


