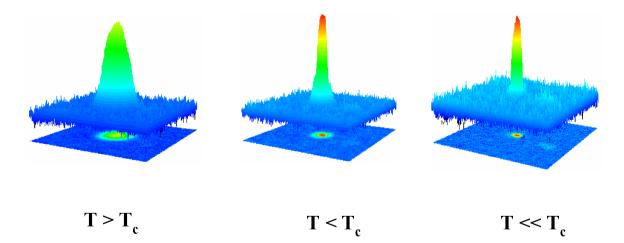
Bose-Einstein Condensation : production, fundaments and modern aspects

V.S.Bagnato ISFC/USP



Lecture II

Lectures:

- 1) The importance of BEC. Basic concepts for BEC
- 2) Interactions in BEC/lattices (exercise) /Thermodynamics
- 3) How to make BEC?
- 4) Coherent modes : equivalence with quantum optics
- 5) Superfluidity aspects: vortices, turbulence and more

$$\frac{\nabla - \text{Interactions}}{\text{First approx.}} H = \frac{P^2}{2m} + U(r) + \int m(r)$$

$$\int >0 \rightarrow \text{repulsion}$$

$$\int 1 < 0 \rightarrow \text{attraction}$$

$$\int ceide = c \leq \int \sqrt{e - Ueff(r)} d^3r de$$

$$\int \sqrt{e}r_{r_1}$$
Using $M(r) \cong \frac{e^{-Ucr}/ur}{\lambda_p^3(r)}$

$$\int Determine mew Tc$$

$$\frac{No}{N} = 1 - \left(\frac{T}{T_c}\right)^{p+1} - \int A\left(\frac{T}{T_c}\right)^{p+3} \geq \frac{No}{N}$$

What is the value of
$$f!$$
?
Consider we know a and a contact
potential $V(\vec{r}_1 - \vec{r}_2) = Vo \delta(\vec{r}_1 - \vec{r}_2)$
 $Vo = Energia \cdot Volume$
 $r_2 = \frac{1}{2} \int Vcr_1 - r_2 m d^3r_2$
 $= \frac{1}{2} \int Vo \delta(r_1 - r_2) m d^3r_2$
 $= \frac{1}{2} \int Vo \delta(r_1 - r_2) m d^3r_2$

$$\int M = \frac{1}{2} V_0 M$$

$$\int I = \frac{1}{2} V_0$$
From simple scattening using a contact
potential $V_0 = \frac{4\pi\hbar^2 \alpha}{m}$

$$\longrightarrow \int N = \frac{2\pi\hbar^2 \alpha}{m}$$
Ex: Harmonic Oscillator
$$\frac{N_0}{N} = 1 - \left(\frac{T}{T_c}\right)^2 - 4\frac{\alpha}{\lambda_0(r)} \left(\frac{T}{T_c}\right)^{\frac{3}{2}} \dots$$

$$\int V$$
(alculation of properties.

Cooling down the system so that all atoms are in a coherent condensate state $\Psi = \Pi \phi_i$ $H = \frac{-\hbar^2}{2m} \nabla^2 + U(\bar{r}) + A |\phi|^2$ is the one pasticke hamiltonian In a variational approach. $E[\varphi] = \langle \varphi | H | \varphi \rangle$

$$= \int dr \left[\frac{\hbar^2}{2m} |\nabla \varphi|^2 + Ucri |\varphi|^2 + \frac{1}{2} A |\varphi|^4 \right]$$

Minimizing EC9] with the constraint
 $SE - \mu \delta N = 0$

$$= Lagrange multipliers$$

$$\frac{-\pi^2}{2m} \nabla^2 \varphi + Ucri \rho cri + A |\varphi|^2 = \mu \rho$$

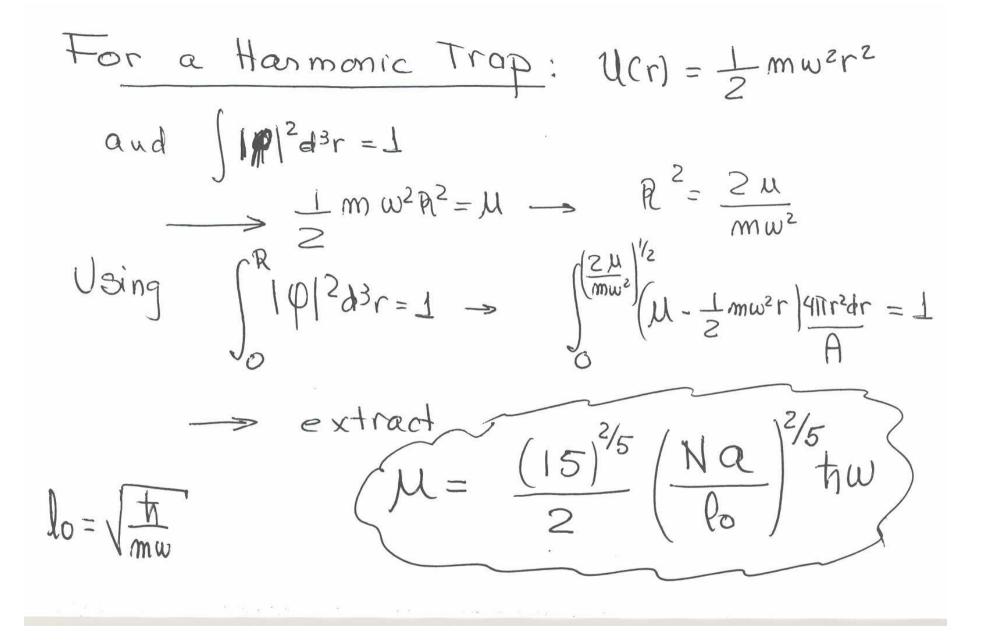
Time independent Gross-Pitaeuskii

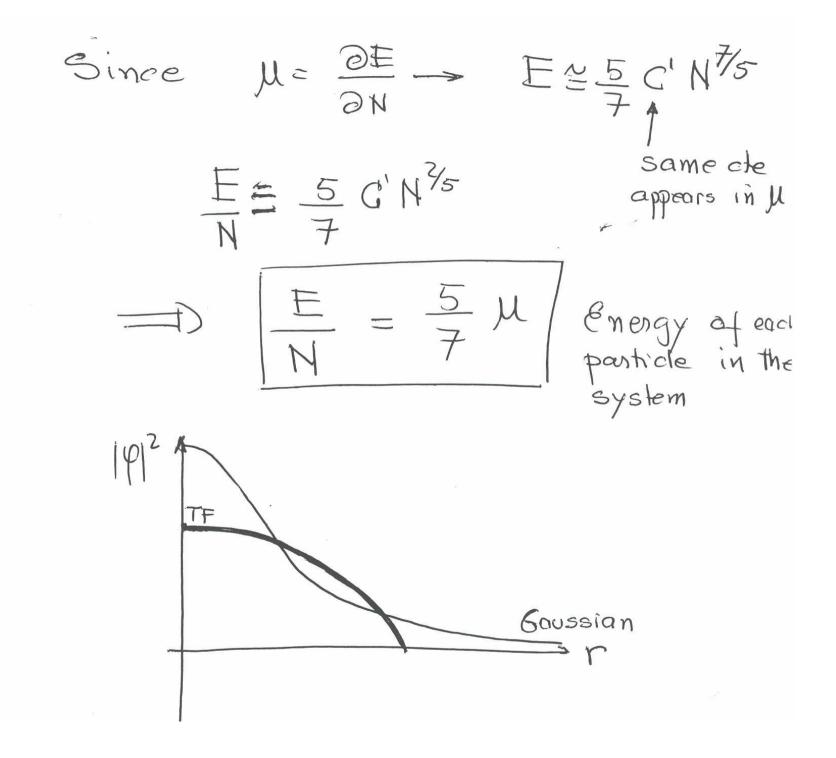
* Has the form of a Schrödinger
equation
* Eigenvalue is the chemical potential,
mot the energy/particle as the conventional
Schrödinger equation
$$(M = \frac{\partial E}{\partial N})$$

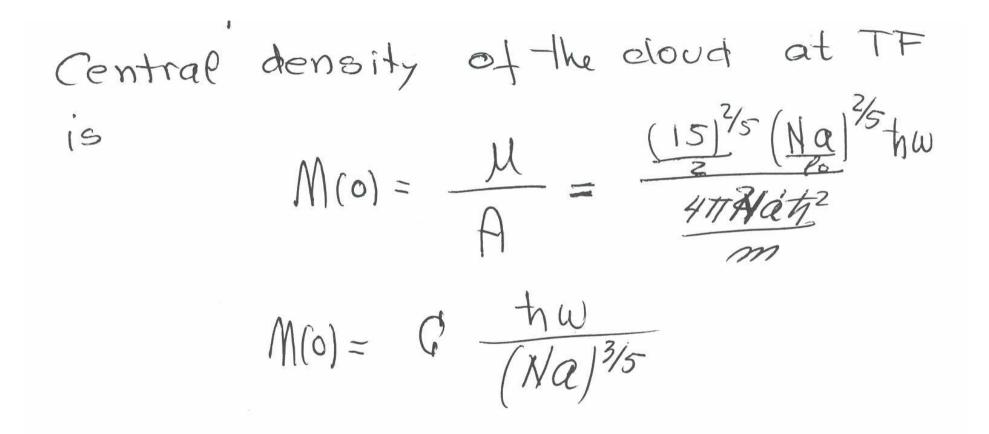
 $E = \langle \mathcal{P}/H/\mathcal{P} \rangle$
=> Many ways to Salve G.P.
equation
 $A \simeq 4 \frac{\pi N h^2 a}{m}$

Thomas - Fermi >
* Negleching the Kinetic energy term
* Strong repulsive inknaction
[Ucri + AIPI2]
$$P = M P$$

 $IPI^2 = M(r) = M - U(r)$
For $U(r) = M$ - boudary of the close
 $P = 0$ outside.







* Combination of variational and perturbation techniques

$$U(r) = \frac{1}{2} m w^{2}r^{2}$$

$$lo = \sqrt{\frac{\pi}{mw}} \qquad j \qquad \alpha \equiv \text{ sooth. length}$$

$$H = -\frac{\pi^{2}}{2m} \nabla^{2} + \frac{1}{2} m w^{2}r^{2} + Al \varphi l^{2}$$

$$Defining \ \text{the interacting parameter } q$$

$$q = \frac{mA}{\pi^{2}l_{0}} = 4\pi N \frac{a}{l_{0}}$$

Using length in units of lo
Emergy " " of the

$$H = -\frac{1}{2}\nabla^2 + \lambda^2 r^2 + \frac{9|9|^2}{2}$$

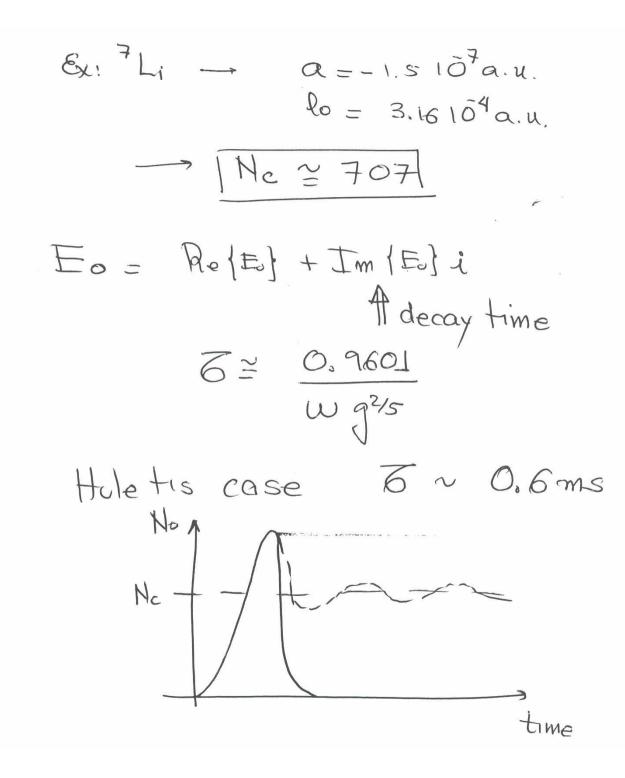
 $H = -\frac{1}{2}\nabla^2 + \lambda^2 r^2 + \frac{9|9|^2}{2}$
 $L_{p,monmalized programs}$
Question: How different is this problem
from
 $H_0 = -\frac{1}{2}\nabla^2 + b^2 r^2$?
 \longrightarrow Solve in terms of Ho

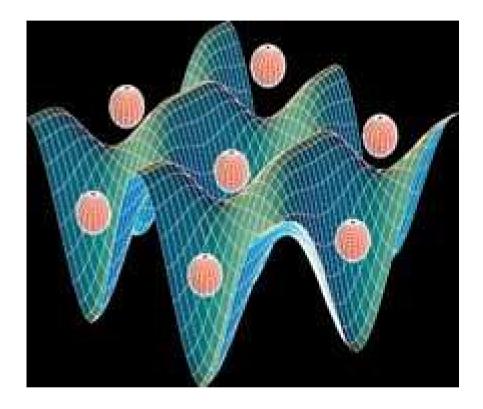
Solution Ho
$$\Rightarrow \{\Psi_n\}$$
 and $\{E_n\}$
 $\Delta H = H - H_0 = \frac{1}{2}(\lambda^2 - B)r^2 + g|p|^2$
Consider φ as Ψ_n
 $Consider \varphi$ as Ψ_n
 $\Rightarrow \Delta E_n = \langle \Psi_n | \Delta H | \Psi_n \rangle$
 \downarrow
 $E_n = E_n^o + \Delta E_n$
 \downarrow
 $\frac{\partial E_n}{\partial b} = 0 \Rightarrow equation for b$
Determine best b
 \downarrow
 $Determine best b$
 \downarrow
 $Determine best $\Psi_i E_n$
 \downarrow
 Ψ
Minimum $E_n \rightarrow$ solution$

2

T

Solving for Eo we find that for
a critical value of
$$g_0$$
, Eo become
ecomplex [...]
 $g_0^{\circ} \cong -0.2674$ $g_0^{\circ} > g_0^{\circ}$
 $\Im complex$
 $4\pi N a < g_0^{\circ} \Longrightarrow$
 $N_c \not\leq (g_0^{\circ}) l_0$
 $N_c \not\leq (g_0^{\circ}) l_0$
 $A\pi a$
 $N > N_c \longrightarrow N_0$ stationary solution





BEC from au optical lattice (2D)

Letis consider a set of bosons in a 2D optical Lattice

- * Consider atoms cooled to the lowest vibrational states of the lattice sites
- + There is no more than one atom per site
- * Occupation number is §.
- * Contar Adiabatically remove the lattice pleuts
- * Il =1 => atoms became a T=0 BEC
- * If $\xi < I$. What is the smallest occupation mumber ξ_0 which will result in formation of BEC after adiabatically removing the lattice

During adiobatically change of the lattice, the entropy $dS = \frac{dQ}{T}$ dos not change. Therefore, to end with a BEC after relaxing the optical lattice one must have in the lattice an entropy equivalent to the free BEC entropy. For the lattice: Consider that there are P available lattice sites, and &P occupied The entropy of this system can be calculated evaluating the configurations of occupation

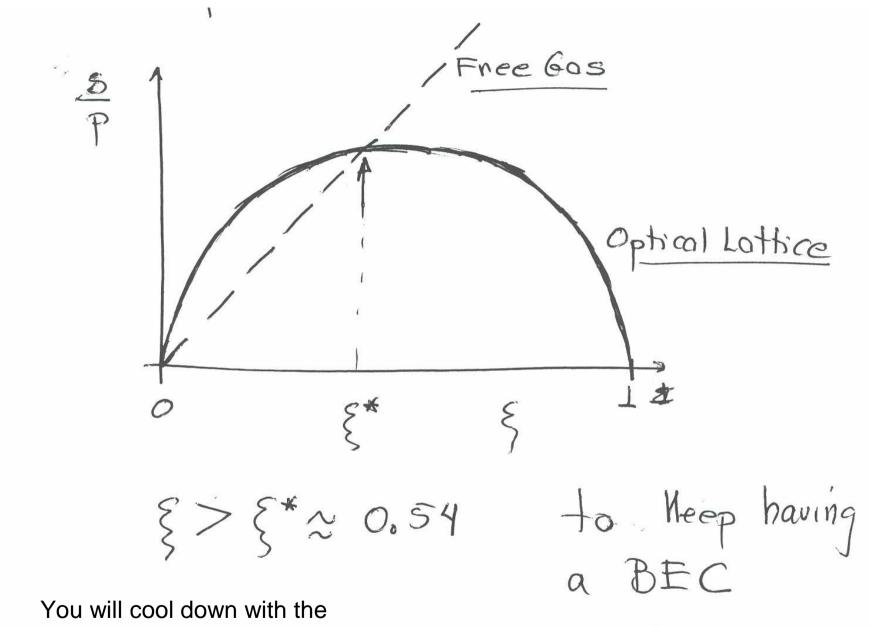
$$\begin{aligned} -\Omega &= \frac{P!}{(\$P)!(P-\$P)!} \\ \text{The entropy is calculated as} \\ &= K_{\$} \ln \Omega \\ &= K_{\$} \ln \frac{P!}{(\$P)!(P-\$P)!} \\ &= K_{\$} \ln \frac{P!}{(\$P)!(P-\$P)!} \\ &= K_{\$} \left[\ln P! - \ln(\$P)! - \ln(P-\$P)! \right] \\ \text{Using Stating's relation } (\ln P! & P \ln P - P) \\ &\left[S &= K_{\$} P \left\{ (\$-1) \cdot \ln(1-\$) - \$ \ln \$ \right\} \right] \end{aligned}$$

For Bose gas below
$$T_c$$

 $C_v = \left(\frac{\partial E}{\partial T}\right)_v$ and $S = \int_0^T \frac{C_v dT'}{T'}$
To evaluate ME : $E = -\frac{\partial}{\partial \beta} \ln \frac{2}{T}$
 $E = \frac{3}{2} \frac{M}{\lambda_p^3(T)} \frac{KT}{\beta_p^3(T)} \frac{9}{9} \frac{s_2}{2} \left(e^{u/uT}\right)$
 $\frac{1}{V}$
 $S = 1.283 N \left(\frac{T}{T_c}\right)^{3/2}$

For the lattice case,
$$N = \$P$$

so $S' = 1.283 \$P(T_{c})^{3/2}$
Per lattice site
 $\frac{S}{P} = K_{8}[(\$-1) \ln(1-\$) - \$en\$]$ lattice
 $\frac{P}{P} = 1.283 \$[(T_{c})^{3/2}]$



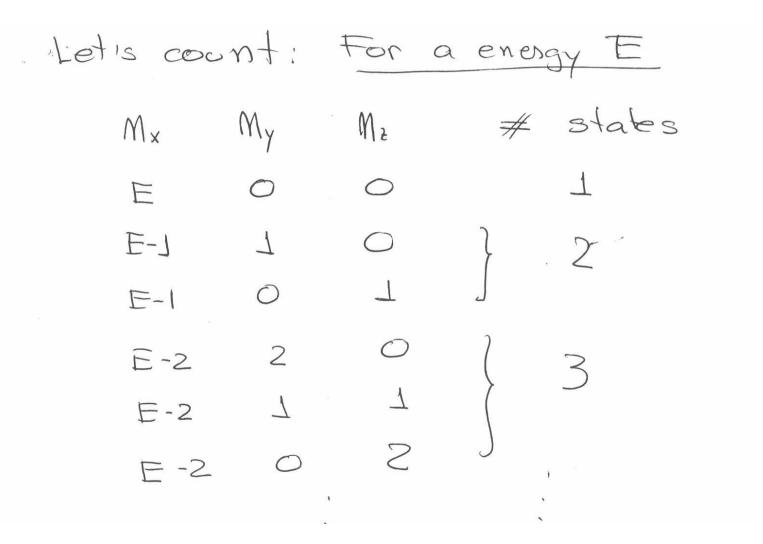
transformation

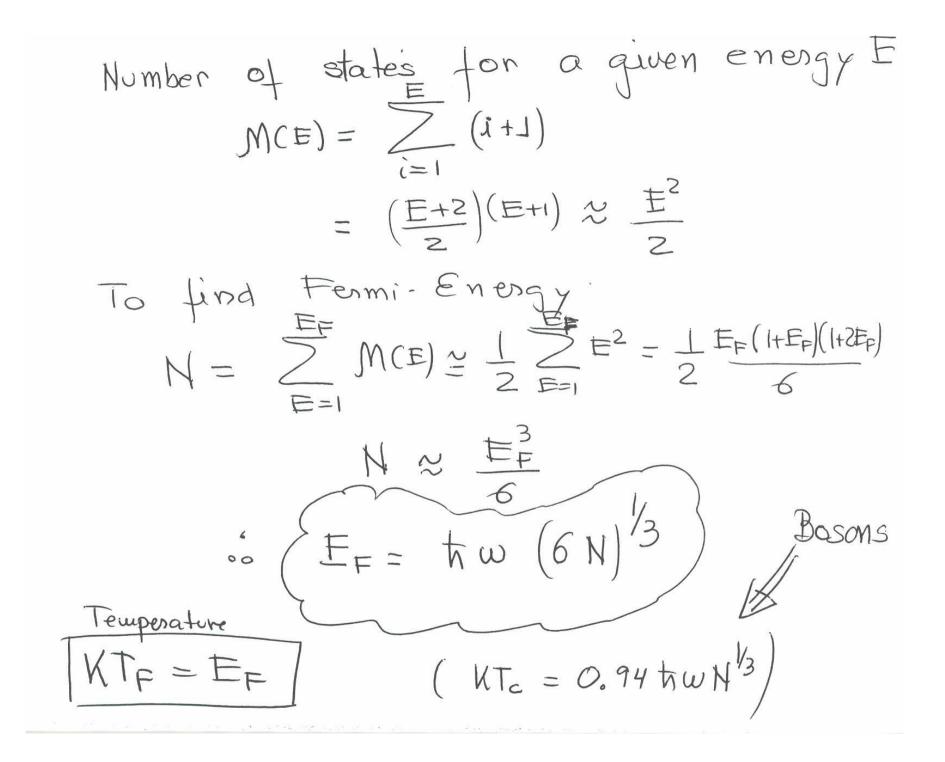
Fermi Energy for a Harmonic Trap
* Many groups working with fermions
A collection of fermions in a box (3D)
(Consider Spin
$$\frac{1}{2}$$
)
 $-F_F = \frac{t^2 \pi^2}{2mL^2} (M_1^2 + M_2^2 + M_3^2)$
 $M_1^2 + M_2^2 + M_3^2 = R^2 = \frac{2mE_F}{t^2T^2} L^2$
 $N = 2 \times \frac{1}{8} \frac{4\pi}{3} R^3 \Rightarrow (F_F = \frac{t^2T^2}{2m} (\frac{3m}{T})^{\frac{2}{3}})$

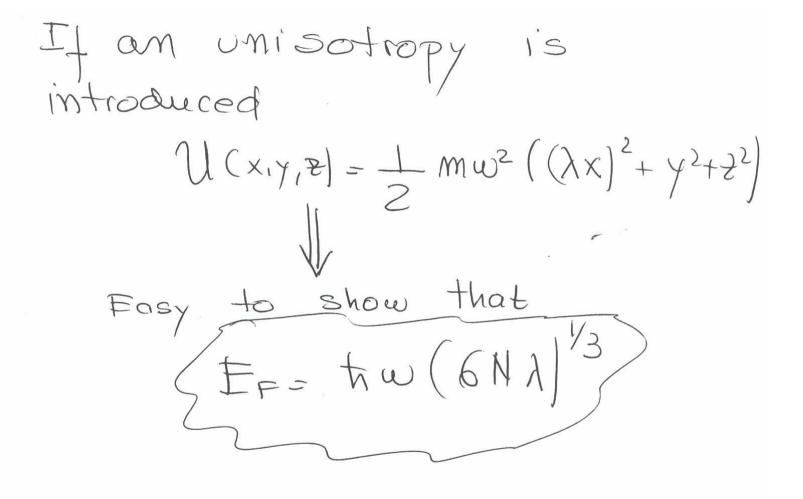
N particles in a Harmonic Trap.

$$\frac{W(x,y_1,z) = \frac{1}{2}mw^2(x^2+y^2+z^2)}{E = trw(mx+my+m_2)} \quad (E_0=0)$$
The units of true

$$E = Mx + My + M_2$$
For a given Energy, how many
combinations of $mx_1my_1 M_2$ are possible?







Important properties of Quart. FLuids
* Superfluidity
* Coherence
I) Speed of sound travel of compression waves
Vs depends on: M. M and w
Dimensional analysis: Us = M^AM^Bw^B

$$V_{5} \cong \sqrt{\frac{M}{M}}$$

Motions slower than Us - condensale flows
Smoothly abound
obstades.
- Above Vs may occur excitation of
particles out of the condensale.

